
Architecture Description Languages and Information

Systems Architects: Never the Twain Shall Meet?

IFIP WG 2.10 Software Architecture Meeting

February 21 - 25 2005, Vancouver, Canada

Eoin Woods

Zühlke Engineering Limited

ewo@zuhlke.com

Abstract

This short position paper briefly reviews the state of practice in

architectural description for information systems, and asks why purpose

designed architecture description languages are not more widely used in

this domain. It then attempts to answer the question, from the author’s

perspective, by reviewing the needs that an information systems architect

would have for a purpose designed architecture description language.

Introduction
In a quest to improve the practice of software architecture, many researchers have

proposed and designed specialist architecture description languages (ADLs) to allow

the precise definition of an architectural design. In reality however, in spite of a wide

variety of such languages being available in the research domain, they are rarely

applied to the definition of real information systems.

In this short paper, I explain the current state of practice, explain why current ADLs

are not widely adopted by practitioners and suggest some requirements that software

architects would have for new ADLs intended to address the information systems

domain.

State of Practice
In my experience, information systems architects do not describe their architectural

designs using languages that software architecture researchers would recognise as

ADLs. The architects I know and work with use two very basic architectural

description techniques: UML and box-and-line diagrams.

The Unified Modelling Language (UML) has fairly widespread recognition and many

architects can read it (particularly version 1.x notations, version 2.0 notations are only

now becoming more widely understood). Some can also use it fairly fluently to

represent the kinds of models that they wish to create, although it is not necessarily

the case that their audiences understand all of the nuances of their use of the language.

Particular strengths of UML as an ADL include its ubiquity, a generally good level

tool support (at a wide range of prices and levels of sophistication) and a reasonably

small, easily understood, core that can be used to represent much of the architecture of

a mainstream information system.

However, UML has its limitations too. In particular, it is a very generic language

containing few primitives that an information systems architect needs to use and so

architects develop their own ways of using the language, which others may not

understand. The lack of standard, widely understood, language extensions means that

an architect has to choose between using a notation which results in their models

looking familiar, but not communicating much of value, or introducing their own

stereotype icons and running the risk of no one understanding that the model is

actually represented in UML. Good examples of the former approach are the

collections of guidelines assembled by Jeff Garland and Richard Anthony [1] and

Nick Rozanski and myself [2].

The lack of direct support for representing common architectural constructs in UML

leads many architects to conclude that it isn’t worth the effort of using a standard

language and instead, they develop their own notation (and perhaps semantics) using

“box-and-line” diagrams or even new icons. A sophisticated example of such a

special-purpose notation is Gregor Holpe’s notation for enterprise application

integration (EAI) systems introduced in [3], commonly known as “Gregorgrams”. In

effect, this is an information systems domain specific architecture description

language, which specifically addresses the architecture description needs of one

aspect of modern information systems development.

The advantages of using a specific language are clear: the language can be tailored to

the task in hand and can be optimised for that task. With modern GUI tools like

Eclipse, Visual Studio and Visio, editors can be created for graphical notations fairly

easily and so the creation of diagrams using the new notations can be made efficient.

The problems with such specially created languages are also fairly clear: the architects

creating them often don’t have the time or expertise to create good notations with well

defined semantics and not many people understand the notations when they are used

(although to be fair, not many practitioners can read UniCon or xADL either).

In summary, the state of practice in architectural description for information systems,

is fairly unsatisfactory with UML being the de-facto standard because of its wide

visibility. However, most architects agree that it’s not a very good language for

architectural description (just the best they have) and so many resort back to “boxes-

and-lines” to make themselves understood.

Existing Architecture Description Languages
Quite a number of purpose-designed ADLs appear to exist in the research domain,

with just one source (the SEI ADL web page [4]) listing about 15, from AADL and

ACME, to UniCon and Wright. Given that there are so many purpose designed

ADLs, why are some of these languages not adopted by information systems

architects? I would suggest that some of the main reasons are those outlined below.

• Marketing. In many cases, architects simply don’t know that these languages

exist and they are unlikely to learn about them unless they attend a specialist

research conference, like ICSE, WADL or EWSA, which is unlikely given the

subjects and attendance patterns of these conferences.

• Priorities. Most of the ADLs appear to focus on describing the functional

and/or concurrency structure of the system. I haven’t discovered one that

places similar emphasis on information or deployment structure, both of which

are key concerns for information systems architects.

• Tool Support. Most ADLs do not appear to have an associated software tool

that a mainstream practitioner would feel comfortable using for their day-to-

day work.

• Representation: Articles that describe the ADLs typically focus on formal and

textual representations of the language, while many architects are used to

graphical approaches.

• Technical Mismatch. None of the ADLs that I have read about represent

modern information systems elements and constructs (such as message

queues, publish/subscribe messaging, databases, web servers, application

servers and so on) as first class language elements (or even standard

extensions).

• Perceived Relevance. At present, there is little interaction between the

practitioner and research communities and so practitioners are more likely to

choose tools and approaches from commercial providers, as they will be

perceived to be more relevant to their needs.

While it probably isn’t necessary (or perhaps possible) to address all of these reasons

for the lack of adoption, I feel that it will be necessary to address a reasonable

proportion of them before an ADL is widely accepted by information systems

architects. In the next section, we will review the priorities that an information

systems architect would have for a new ADL.

Priorities of an Information Systems Architect
As alluded to in the previous section, I would suggest that a large part of the reason

that existing ADLs have not been widely adopted for information systems stems from

the differing priorities of the developers of the ADLs and the typical information

systems architect. I would summarise the main requirements that an architect has for

an architectural design notation as follows.

• Support for Multiple Views. Most approaches for information systems (and

enterprise) architecture advocate the use of a number of views of the system,

including functional, information, concurrency, deployment and so on. An

information systems ADL will need to support the majority of the views that

are commonly used by information systems architects.

• Direct Domain Support. Information systems architects want to be able to

express their designs directly in terms of the standard types of system element

that they work with in their domain. Concepts such as clients, servers,

message queues of different sorts, component containers, data stores of

different types, firewalls and networks of different sorts all need to be directly

available as first class language constructs. Of course, this does not mean that

these concepts need to be (or should be) part of the language core, but the

language that architects actually use needs to include them as standard

features.

• Strong Tool Support. The adoption of any textual or graphical notation is

eased when powerful, usable tools are available to support it. To be a

practical proposition, any new information systems ADL needs to be

supported by suitable tools that will be familiar to the architect. In the current

environment, this means making tool support available as extensions to

familiar, existing toolsets such as Eclipse, Visual Studio and Visio.

• Incremental Adoption. It is unlikely that an organisation will be prepared to

comprehensively adopt a new approach to architectural description in a single

step. Successful adoption of a new ADL will involve architects successfully

applying it incrementally to existing work and proving its effectiveness before

applying it more widely.

• Reuse of Models. Creating a comprehensive architectural description is an

involved and time-consuming process. An architect will find it much easier

to justify investing this level of effort if the architectural models can be reused

in a number of ways once created. Examples of such reuse could include

automatic generation of skeleton systems (ideally with “round trip” facilities

in the other direction) or the ability to perform performance analysis by

applying a set of metrics to the model.

In summary, in order to attract wide use by architecture practitioners, a new ADL

must be immediately usable in a way that will provide the architect with enough

direct value from its use to justify the time and any direct costs of adoption.

Conclusions
There is much scope for improvement in the current state of practice of architectural

description for information systems, in order to better support the architectural

definition process.

Existing ADLs are not widely used by practicing information systems architects

because, while undoubtedly rigorous, they do not align well with the specific needs

and priorities of a practicing architect.

Should ADL designers wish to address the information systems domain, they must

focus much more closely on the specifics of the domain and the practical, as well as

conceptual, needs of those who will apply the languages developed.

References
[1] Jeff Garland and Richard Anthony, Large-Scale Software Architecture, Wiley,

2003.

[2] Nick Rozanski and Eoin Woods, Software Systems Architecture: Viewpoint

Oriented System Development, Addison-Wesley, 2005.

[3] Gregor Holpe and Bobby Woolf, Enterprise Integration Patterns, Addison-

Wesley 2003.

[4] Software Engineering Institute, Architecture Description Languages web page

http://www.sei.cmu.edu/architecture/adl.html

