Provided for non-commercial research and education use.
Not for reproduction, distribution or commercial use.

R

The]!ournal of
Systems and Software

T

This article appeared in a journal published by Elsevier. The attached

copy is furnished to the author for internal non-commercial research

and education use, including for instruction at the authors institution
and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party
websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

The Journal of Systems and Software 85 (2012) 2034-2047

journal homepage: www.elsevier.com/locate/jss

Contents lists available at SciVerse ScienceDirect

The Journal of Systems and Software

of

i

iy
I

Industrial architectural assessment using TARA

Eoin Woods*

Artechra, Hemel Hempstead, Hertfordshire, UK

ARTICLE INFO ABSTRACT

Article history:

Received 15 December 2011

Received in revised form 14 April 2012
Accepted 23 April 2012

Available online 2 May 2012

Keywords:

Software architecture

Software architecture assessment
Case study

Expert-judgement

Scenario based architectural assessment is a well-established approach for assessing architectural
designs. However scenario-based methods are not always usable in an industrial context, where in our
experience, they can be perceived as complicated and expensive to use. In this paper we explore why
this may be the case and define a simpler technique called TARA, which has been designed for use in
situations where scenario based methods are unlikely to be successful. The method is illustrated through
an experience report that explains how it was applied to the assessment of two quantitative financial
analysis systems, and its strengths, weaknesses and relationship to other methods are briefly discussed.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Scenario-based architectural assessment techniques are a well-
established approach for performing structured evaluations of
architectural designs, with the aim of validating that they meet cer-
tain objectives and analysing the decisions that have been made in
order to achieve them. New research is published in this area reg-
ularly (Kazman et al., 1996, 1998; Barbacci et al., 2003; Olumofin
and Misic, 2005; Pooley and Abdullatif, 2010) and there is evidence
of some industrial adoption of the techniques too (Zalewski, 2007,
Kettu et al., 2008).

However we have observed that scenario based architectural
assessment techniques are not very widely used in industry, with
informal approaches or “assessment by committee debate” being
more common. Experience of trying to use scenario based tech-
niques in industry has led us to conclude that this is for a number of
reasons including a perception that these techniques are involved
and expensive to apply, a lack of confidence about the benefits
of such assessments and the fact that most of the methods focus
on assessing architectural proposals rather than considering a sys-
tem’s implementation as part of the process (where it is available).

Our experience also suggests that the context of an industrial
assessment is often at variance with the context that is assumed by
scenario-based methods. For example, where ATAM assumes early
stakeholder involvement and the assessment of competing archi-
tectural options, the industrial context is often one where some
key architectural decisions have already been made and a system

* Correspondence address. Tel.: +44 1442 254761.
E-mail addresses: eoin.woods@artechra.com, eoinwoods@gmail.com

0164-1212/$ - see front matter © 2012 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/].jss.2012.04.055

is partially or completely implemented. In these situations, the
assessment needs to focus on whether the architectural decisions
that have already been made can support the key requirements of
the system, rather than debating options prior to implementation.

This experience with industrial architectural assessment led us
to create a simple architectural review method called the Tiny
Architectural Review Approach (TARA) that is quick and inexpen-
sive to apply. Itaims to be less prescriptive than most of the scenario
based methods, does not assume that all of the system stakeholders
can dedicate much time to the process and where the implementa-
tion of the system is available, uses this as one of its major inputs.

The remainder of this paper explains why an alternative to for-
mal scenario based architectural assessment methods is sometimes
needed, defines the steps of the TARA approach, presents a case
study that explains how it was used for the assessment of two sys-
tems, and discusses the strengths and weaknesses of the method
and how it compares to other architectural assessment approaches.

2. Using scenario based assessment methods

Most scenario-based assessment methods, such as ATAM
(Kazman et al., 1998) and CPASA (Pooley and Abdullatif, 2010) are
thorough and comprehensive approaches that gather the stake-
holders of a system and lead them through a structured process that
explores the trade offs between conflicting architectural options
and the resulting implications for the effectiveness of the system.
They result in a deep understanding of the architectural options
for the system under consideration and the strengths and weak-
nesses that they are likely to embody. Such methods are valuable
additions to the software architect’s range of techniques, and can
produce very valuable results when thoughtfully applied.

E. Woods / The Journal of Systems and Software 85 (2012) 2034-2047 2035

However, our experience suggests that the use of formal
scenario-based assessment methods in industry is quite rare and
our experience of trying to introduce them has led us to conclude
that there are a number of reasons for this.

Firstly, there is a common perception that applying a method
like ATAM is complicated and costly, coupled with a lack of convic-
tion that the results of the exercise will be useful (or at least useful
enough to provide a return on investment). Applying a method
like ATAM, having just read a book or technical report, is quite a
daunting prospect with many unanswered questions, involving a
number of probably unfamiliar concepts such as scenarios, archi-
tectural styles and utility trees. For a complicated system, just
the difficulty of persuading the relevant stakeholders to partici-
pate is enough to deter many people from embarking on such an
exercise.

A secondary reason that many people do not use methods like
ATAM is that they focus on the design options for the system and
do not explicitly suggest using implementation artefacts as inputs.
This reflects the focus of these methods, which is on performing
pre-implementation assessments, and it allows the methods to be
used in order to choose between competing design options before
system implementation. But many industrial assessments are initi-
ated because of dissatisfaction with a system that s at least partially
implemented already. In these situations the implementation of the
system is an invaluable input into the assessment exercise. While
this is not the only context in which TARA is a useful approach, it is
one that most other evaluation methods do not address explicitly.

Industrial systems development is also frequently undertakenin
the context of evolving and extending existing systems, rather than
creating entirely new ones (so called “brown-field” development
rather than “green-field” development). In these cases, the existing
implementation of the system is an important part of the design
context that needs to be taken into account.

A third reason that that can act as a barrier to the adoption
of scenario-based methods, which has been noted by others too
(Bashroushetal.,2004), is the need for significant time and commit-
ment from a range of stakeholders in order to identify, define and
validate a good set of scenarios. This can be very difficult to achieve
in an industrial context when there is not a general understanding
and acceptance of the benefits of architectural assessment.

In order to provide an alternative approach, that offers the
option of focusing on an implemented architecture, as much as
a design proposal, the Tiny Architectural Review Approach was
defined to provide a simple approach to performing a basic archi-
tectural review that would be structured and repeatable as well as
easy to apply with limited resources and commitment. The term
“tiny” is used deliberately in the name to stress that the method
is the simplest approach possible, rather than a comprehensive
method.

The aims of TARA are twofold. Firstly it aims to provide some
structure and guidance as to how to run a simple architectural
review without extensive involvement from all of the system’s
stakeholders. Secondly, it aims to prove that architectural reviews
are valuable and so allow discussions about the usefulness of
architectural review in general and the possibility of using more
sophisticated methods where the situation justifies them.

3. Related work

There is a large body of research literature on the subject of
architectural evaluation of software intensive systems. It appears
that there has been research going on in the area of architectural
assessment for over 15 years, with the earliest definition of a sys-
tematic method for analysing the architecture of a system being

the initial description of the scenario-based SAAM method in 1996
(Kazman et al., 1996).

Since then, methods defined by the SEl including ATAM (Kazman
etal., 1998), QAW (Barbacci et al., 2003) and ARID (Clements, 2000)
have been very influential in this area. Arguably ATAM has become
the de-facto standard for architectural assessment where a formally
defined method is used. These methods have also spawned a num-
ber of derivatives such as SAAMCS (Lassing et al., 1999) and ESAMMI
(Molter, 1999) that are extensions of SAAM and HoPLAA (Olumofin
and Misic, 2005) that is an extension of ATAM.

Other scenario-based architectural evaluation methods that
have independently been proposed include Architecture Level
Modifiability Analysis (ALMA, Bengtsson et al., 2004), Continuous
Performance Assessment of Software Architecture (CPASA, Pooley
and Abdullatif, 2010) and Architecture Level Prediction of Software
Maintenance (ALPSM, Bengtsson and Bosch, 1999).

It is interesting to note that most of the architectural evaluation
and assessment methods that have been defined in the research
community are scenario based, with a consensus obviously having
been reached that scenarios should underpin any effective evalua-
tion technique. However, as Jan Bosch notes (in Bosch, 2000) there
are at least four general approaches to architectural assessment:
scenario-based methods, simulation-based approaches, methods
using mathematical models and experience-based assessment.

An early approach aimed at making design reviews effective
that did not use scenarios was Active Design Reviews (Parnas and
Weiss, 1987), which uses questionnaires rather than review meet-
ings. Much later, the SARA working group gathered the knowledge
of a number of experts and created a report containing a high level
approach to architectural review (Obbink et al., 2002), which does
allow for the use of scenario based assessment but suggests many
other techniques that can be used in conjunction with or instead of
scenarios.

More recently there have been some interesting reports of
people who have explored architectural assessment and analysis
techniques that do not assume the use of scenarios, such as the Soft-
ware Architecture Evaluation Model (SAEM, Duenas et al., 1998), an
approach based on the Goal/Question/Metric framework (Zalewski,
2007), and the Independent Software Architecture Review (ISAR)
approach (Tang et al., 2008) that attempts to improve architectural
evaluation by defining a comprehensive standard for the documen-
tation that is required to perform an assessment exercise.

TARA is not the only attempt to make architectural assess-
ment more approachable in an industrial context. The Lightweight
Architecture Alternative Analysis Method (LAAAM) defined by
Jeromy Carriere is not yet very thoroughly defined in the litera-
ture (Carriere, 2009) but seems to have been created with similar
motivations to TARA. It is an innovative method based on some of
the key concepts of ATAM, which aims to simplify it, while retain-
ing the use of key techniques such as scenarios and quality attribute
trees.

Finally, Tommy Kettu and his colleagues discuss how architec-
tural analysis is used at ABB, to support understanding and evolving
existing systems (Kettu et al., 2008). In many ways, the experi-
ence reported by these authors is closest to the environment and
experiences that inspired the development of TARA.

4. The TARA method
4.1. Origins of the approach

The TARA method was initially developed in response to a
request to provide an assessment of a quantitative financial analysis

system that had been developed in-house by a major fund man-
ager. The system had been developed within a specific business

2036 E. Woods / The Journal of Systems and Software 85 (2012) 2034-2047

unit (largely outside the purview of the people who viewed them-
selves as responsible for such systems). The system appeared to be
successful and the question being asked was whether the system
should be adopted more widely in the organisation. The system was
new, and so somewhat unproven, but it was largely finished and
appeared to have strong user acceptance.

A senior business manager had inherited ownership of the sys-
tem due to a reorganisation and needed to know how “good”
the system was in order to decide whether he was going to
sponsor its on-going development (in the face of some opposi-
tion). Open and frank discussions with the manager concerned
revealed that by “good” he meant whether the system'’s architec-
ture was fit for purpose, rather than whether the code modules
were written well at the most detailed level. The motivation for
the question was to establish whether investment should con-
tinue in this system, because its fundamental design decisions
were sound, or whether investment should be directed elsewhere
because however well written the individual classes were, the sys-
tem architecture could not support the key requirements of the
system.

The sponsoring manager needed answers quite quickly and
the timing and organisational and political context of the request
meant that there would not have been much enthusiasm for
employing a more thorough “high ceremony” method like ATAM.

At this point, the TARA method had not been defined and the
options open to the assessor were to attempt the use of a stan-
dard scenario based assessment method or to try to perform the
assessment in an ad-hoc manner. However the idea of a lightweight
assessment approach for situations like this emerged and it was
decided to try to define the method (which is now called TARA)
and test it on the system in question.

At this stage the method was defined very informally, by creat-
ing a document template containing the headings for the outputs
that the review would need to produce. As the headings formed,
the need for other sections emerged (such as the code analysis sec-
tion to balance the more abstract and subjective sections) and the
first TARA review simply involved the completion of the activities
needed to finish the document.

Some months later a similar situation arose, by coincidence with
a similar system, another quantitative analytics system. Again, a
senior manager had inherited a system by virtue of a reorganisa-
tion and needed to understand what he had become responsible
for. In this case, it was assumed that the system in question was
going to be used as the global strategic system for the type of
processing that it was responsible for, but no architectural assess-
ment had been performed to support this decision. The manager
in question, having seen the earlier assessment’s outputs, asked
for a similar assessment to be performed for this second sys-
tem, in order to assess its “fitness for purpose” in its proposed
role.

This second architectural review was performed using the same
process as the first one and as part of the exercise the first written
description of the approach was produced, in order to allow it to
be explained to both review participants and to other assessors
who might perform future reviews. Following this, another assessor
undertook a couple of reviews based on the approach in the same
organisation.

In summary, at the time of writing, the method has been used
to provide some insight into the suitability of the architecture of a
handful of systems, by a handful of assessors, all within one organ-
isation. This is not a strong claim to repeatability, however it has
been explained to a couple of assessors not involved in its devel-
opment and used in a couple of assessments separate from those
described in this paper. While this is clearly small-scale use, it does
suggest that there are not major barriers to wider scale application
and its use is not just limited to those involved in its creation.

4.2. Overview of TARA

The Tiny Architectural Review Approach (TARA) is based on
industrial experience in situations where full blown architectural
assessment methods are not suitable for reasons such as organi-
sational culture, lack of familiarity with architectural assessment,
insufficient budget or time for a larger exercise or an inability to
involve a representative stakeholder group in the process. These
experiences led to the conclusion that a structured and repeatable
method would be useful, provided that it could be made quick, flex-
ible and simple to use, and require a modest initial investment of
time and resources.

TARA differs from more formal scenario-based methods in a
number of important ways:

¢ The approach does not mandate the use of scenarios because, in
our experience, creating valid and meaningful scenarios requires
significant time and effort from a range of system stakeholders.
As already explained, TARA aims to be useful in situations where
little focus and time is available from many of the important
stakeholders. Hence the TARA approachis to involve stakeholders
wherever possible (and certainly to validate all assumptions with
them) but not to assume significant commitment and engage-
ment on their part. We tried using scenarios without direct
stakeholder input but found that an assessor creating formal sce-
narios themselves was a rather artificial and time-consuming
activity. Instead, as we will show later, we decided to base TARA
more on expert judgement than scenarios, although scenarios
may well be used as part of the process.

e Most scenario-based methods (ATAM being the classical exam-
ple) are at their most effective when helping an engaged
stakeholder community choose between a number of architec-
tural options. TARA focuses on the simpler situation of trying to
establish how well suited a particular architecture (which has
often been partially implemented) is to supporting a set of key
requirements

The method explicitly allows for the situation where the system

has already been implemented. The method can be used when

a system does not yet exist, but where an implementation is

available it forms an important input to the process.

* TARA deliberately does not mandate specific analysis techniques
(such as ATAM'’s use of quality attribute trees). Such techniques
can all be used if appropriate, but one of the key characteristics of
TARA is its simplicity and mandating additional techniques can
be off-putting when a simple approach is needed.

* TARA is intended for use by a single assessor, or a small group of
assessors, rather than assuming that a large group of stakeholders
will be prepared to dedicate significant time to the assessment
process.

The trade-off inherent in the approach is that using TARA results
in an architectural assessment that is less thorough, insightful and
reliable than one performed with a more formal and compre-
hensive review technique such as ATAM. Given the approach of
stakeholder consultation rather than mandatory participation, it
is also important that the assessor using the technique has good
organisational and domain knowledge to compensate for this (and
so TARA is probably more suitable for in-house use than use by
visiting consultants).

However the great strength of the method is that it can often
be used in situations where it would not be possible to use a more
involved scenario based technique. TARA can also be used as a first
step in architectural evaluation for an organisation that needs to
be convinced of its benefits. Once benefits are forthcoming from
TARA’s simple approach, this may help significantly with the intro-
duction of more sophisticated techniques.

E. Woods / The Journal of Systems and Software 85 (2012) 2034-2047 2037

{fteration)

~

. .| 1-System Context and
o Requirements

|

2. Functlonal and

5. Identify and Report

A4

Deployment Views

|

3. Implementation
Analysis

!

4. Requirements
Assessment

Fig. 1. The steps

The important preconditions for a successful TARA assessment
are:

¢ A sponsor who is responsible for the system concerned, wants
a number of valid questions answered and is prepared to trust
the judgement of the assessor. This precondition is important to
provide a purpose and focus for the review and to ensure that the
assessor is likely to receive the cooperation required to perform
the assessment.

® Anassessor with sufficient organisational and domain knowledge
to understand the role of the system and its key functions and
to understand the organisational context of the system and the
review being performed. This knowledge is important because,
when using this approach, the assessor cannot rely on a formal
process of stakeholder consensus building to help him under-
stand the system.

e Access to the implementation and production instance of the sys-
tem being assessed (assuming it exists) and ideally access to the
development and support team who are responsible for it. This
access allows the assessor to gain a detailed understanding of the
system based on its real implementation and production char-
acteristics, rather than relying on the possibly biased opinions of
the limited stakeholder group who are likely to be involved in the
review.

These preconditions help to compensate for the inevitable lim-
itations that result from the simplicity of the approach.

The TARA assessment process is structured into seven steps as
shown in Fig. 1 and described in the sections below.

4.3. Step 1: system context and requirements

The first step in the processis to understand the context in which
the system exists and the key functional and quality-property
requirements that the system must meet. Occasionally this infor-
mation will be readily to hand, in user stories, requirements
documents, work tracking systems (such as Jira), requirements list
spreadsheets and so on, but usually gathering this information is

Findings

!

6. Create Conclusions
for the Sponsor

|

7. Deliver the Findings .
and Recommendations

Y

in the TARA method.

part of the assessment exercise. This step in the process is roughly
equivalent to the step in the ATAM process called “Presenting the
Business Drivers” (Kazman et al., 1998).

The system context and key functional requirements are usu-
ally fairly straightforward to gather from the development team,
the system’s key users and perhaps the sponsor who has asked for
the assessment (although the differences in the requirements focus
between those groups can be illuminating in itself). This stage in the
processis a key point when it is valuable to consult the stakeholders
who are available and prepared to be involved in the assessment.
Our experience is that meetings with small numbers of stakehold-
ers tend to be the most efficient way to involve them in the process,
but if stakeholders are prepared to attend workshops, this is the
time to schedule them.

The system context can often also be deduced from the sys-
tem’s implementation and operational environment, which is a
useful cross check. It can also be useful to crosscheck the func-
tional requirements that are gathered from stakeholders against
the functions that the system actually provides.

In contrast, experience has shown that gathering a good set of
system quality requirements is usually significantly more difficult
than gathering functional requirements. In many cases, even the
development team will struggle to clearly define the qualities that
their system is expected to meet, meaning that the assessor needs
to define these requirements. (Which can be time consuming, but
means that a set of reasonably accurate quality requirements is a
useful side effect of the assessment process.)

The best approach we have found for identifying system qual-
ity requirements is for the assessor to use their experience in the
domain to suggest a set of credible quality requirements based on
domain and organisational standards and norms (for example, esti-
mating the system’s required availability based on working hours
and its recovery point objective based on industry norms for data
loss). This set of candidate quality requirements can then be vali-
dated with relevant system stakeholders. Experience suggests that
development teams and key users or sponsors can spot and correct
an unreasonable quality property requirement much more quickly
than writing one by themselves.

2038 E. Woods / The Journal of Systems and Software 85 (2012) 2034-2047

The output of this step should be a clear context diagram, show-
ing how the system relates to its environment (such as systems it
receives data from or supplies data to) along with a succinct set of
requirement statements that capture the key functional and system
quality requirements for the system.

4.4. Step 2: functional and deployment views

Having understood the system’s context and requirements, the
next step is to understand its key design elements. As has been
extensively discussed (Garlan et al., 2010) the architecture of a
system is made up of a number of structures (including func-
tional elements, information elements, deployment environment,
software design structures and so on). For the purposes of this exer-
cise, experience has shown that the key architectural structures to
understand for assessment are the functional structure (runtime
elements, their responsibility and interactions) and deployment
structure (the environment that the runtime elements are deployed
into). This step in the process is roughly equivalent to the step of
“Presenting the Architecture” in the ATAM method (Kazman et al.,
1998).

Some of this information can usually be found in the form of
Visio, PowerPoint, whiteboard sketches or more formal artefacts
like UML models. However, it is usually the case that part of the
assessment activity will be the creation of fairly formal “archi-
tectural sketches” to provide outline functional and deployment
views of the system. (The term “sketch” in this context means a
well-defined graphical representation of the architectural struc-
ture, with enough supporting text or other information to make it
sufficient for the exercise in hand, as opposed to a fully completed
architectural “model” intended for more general use.) Any suitable
notation can be used for the architectural sketches, but we have
generally used UML and found it to work well. What is important
is that whoever creates the views (typically the assessor) is clear as
to what they are representing and that the notation used is clearly
defined (which in itself requires effort, but is well worth expending
time the time required in order to achieve this).

It is also important that at this stage the assessor clearly under-
stands the architectural structures represented in the views and is
very confident that they are correct. This is the moment to find out
whether the team members have been describing a “logical” view
of the system (i.e. an idealised imaginary one describing what they
wish they would built) or whether the views that the assessor has
managed to assemble are an accurate depiction of reality. It is usu-
ally necessary to walk through some mental processing scenarios
and perform some tactful and discreet crosschecking with imple-
mentation artefacts and the production environment in order to
achieve this.

The output of this step should be a small number of relevant
architectural views, and a thorough understanding of the system’s
main architectural structures on the part of the assessor, which
should provide a good basis for the rest of the assessment process.

4.5. Step 3: implementation analysis

The creation of the context diagram, identification of require-
ments and the creation of the functional and deployment views are
all activities that rely to some extent on expert judgement rather
than simply recovering facts. When they are available, the next step
in the process analyses the system code and other implementation
artefacts in order to provide some objective knowledge into the
exercise. As the old saying goes “the code does not lie”. As well as
source code, the system’s production metrics, incident reports, log
files, test reports and so on can all provide useful insight into the
ability of the system’s architecture to meet its key requirements.
That said, the focus on TARA is on the design of the system, so the

system structures recovered from code are the key input into this
step, as that is where much of the design information is often hiding.

The code analysis that can be performed depends on the lan-
guages that the system has been implemented in, the quality of
the code and the analysis tools available. For example, a well-
structured system implemented entirely in a byte-code compiled
language (like Java or C#), where tests have been separated from
production code, that follows conventions and where some static
analysis tools are available, will be much easier to analyse than a sit-
uation where a system is written in Perl, following few conventions
and where a good analysis tool is not available.

The basic types of code analysis recommended as part of a TARA
analysis are:

e Module structure and dependencies (ideally recovered using an
automated tool, so showing the real structure of the system).

e Size measured in terms of lines of code, size of binaries, number of
files/classes/procedures or similar, with separate measures taken
for production code and test code.

e Code characterisation metrics measured using an automated tool
that can derive measures such as the cyclomatic complexity, XS,
code duplication, coupling, comment to code ratio, number of
large methods and similar, for each module of the system, as well
as weighted averages at higher levels.

e Test coverage, measured using a coverage analyser, after running
all automated tests that are available.

These measures are all easy to derive using readily available
commercial or open source tools, are easily explained and provide
a good characterisation of a system’s implementation. They pro-
vide some quantitative background to the design recovery work
and often point to areas of the system that merit further inves-
tigation. They can only provide a partial picture of the system’s
architecture (for example they cannot assess the runtime qualities
or the deployment environment) but still provide a useful insight
into the system’s design and implementation.

More advanced code analysis techniques which are well worth
considering if the time and tools to measure them are available
include static problem analysis (using commercial tools like Jtest or
open source ones like FindBugs), to provide a general indication of
how carefully the code has been written, and test mutation analysis
(using something like Jumble or Jester) to establish whether a high
code coverage measure means anything or not. If the development
team has been honest enough to keep a realistic technical debt log,
then this is also a useful input (although clearly, it is important not
to use it to inadvertently “punish the innocent” for doing the right
thing).

As already mentioned, the production environment is also a
rich source of information that can be used to assess the ability of
the system to meet its key requirements. Incident logs can help to
highlight areas of the architecture that need improvement, release
records can suggest strengths or weaknesses in continuous delivery
or testing, production logs can allow automated derivation of pro-
duction metrics, infrastructure metrics can help to identify resource
usage and so on. Depending on its focus, some or all of these inputs
can be relevant inputs to the assessment process.

4.6. Step 4: requirements assessment

By this stage, the assessor should have a good understanding
of the capabilities of the system and how well it has been imple-
mented. The next stage is to move up to the level of system design
and to perform an assessment of the ability of the system to meet
its functional and system quality requirements.

Given the deliberate simplicity of the TARA method, this step
in the process is one that relies primarily on judgement rather

E. Woods / The Journal of Systems and Software 85 (2012) 2034-2047 2039

than quantifiable assessment. The ability of the system to meet its
requirements usually cannot be tested during an exercise such as
this but must be assessed by expert judgement. That said, where
the system is in production operation and metrics are available (e.g.
for throughput or outages) then these should be used as an input
to the process. It is also worth noting that assessing the ability of
a system (or potential system) to meet its requirements almost
always involves expert judgement to some extent, even if more
sophisticated methods (such as scenarios) are used as part of the
process.

The functional capabilities of the system are easier to assess
than the system’s qualities and the match between the capabili-
ties and the current requirements can usually be assessed using a
combination of the assessor’s domain knowledge and canvassing
the opinion of domain experts such as key end-users of the sys-
tem. A structured approach to assessing functional requirements
fit is to split each functional requirements area into a list of fine-
grained functions of roughly equivalent complexity, and then to
count the percentage of those functions that are provided by the
system (effectively performing a gap analysis). This is a point in
the process where the use of functional scenarios can be valuable
and the assessor should consider using them, even it is not possible
to validate them thoroughly with the system’s stakeholders. Again,
this is a situation where stakeholders should certainly be consulted
but may not necessarily be fully engaged in the process.

Amassing proof the architecture’s ability to meet its key quality
requirements can be quite difficult. Even when available, assess-
ment methods from the research domain may not have a lot of
credibility in the organisation and may not be mature enough for
use in an industrial project. On the other hand, it may not be
practical to test the system in order to prove that it can achieve
its key qualities. In addition, the obvious sources of knowledge
about the system (such as the development team or the system
administrators) may well not have accurate information or sound
intuition about its ability to scale, be secure, provide a certain level
of throughput and so on. As noted earlier, the lack of precision
and the uncertainty that tends to characterise the available quality
property requirements makes this process difficult.

Realistically, in a short assessment exercise, the assessor needs
to rely on expert judgement (their own and others who they can
find to assist them) in order to estimate the non-functional abilities
of the system. But this is also the step in the process where a num-
ber of established techniques including scenarios, quality attribute
trees and modelling techniques such as queuing models are valu-
able and should be used where they appear to be useful. The method
deliberately does not mandate their use, but does not discourage it
either. The goal should be to produce some form of measure as to
how well the system is likely to be able to meet its quality objec-
tives (such as a confidence indicator). In practice we have found that
the ATAM quality attribute tree technique is useful, even if used
informally, to refine the requirements to simple scenarios that can
be analysed further.

The result of this step should be a clear list of the system’s
functional and quality property requirement areas, with a clearly
defined measure of the assessor’s confidence in the system’s abil-
ity to meet each area (we have typically used high/medium/low,
red/amber/green and 1-5).

4.7. Step 5: identify and report findings

Throughout the assessment activities, the assessor will have
been drawing conclusions about the context in which the system
is being developed, the fundamental soundness of the system'’s
design, the way in which it has been implemented, the way it
is deployed and operated, and its likely ability to meet its key
requirements. All of these insights should have been based on a

combination of facts about the system’s design and implemen-
tation and the judgement and experience of the assessor. All of
these insights are valuable and should be captured as outputs of
the assessment activity.

Experience suggests that it is sensible to create the assessment
report in parallel with the assessment activities taking place, but
this is the point at which the assessor needs to consider how best
to present the information in the report, so that all of the evidence
and opinions are clearly stated (and supported where necessary).

The findings need to be organised into logical groups that relate
to the different aspects of the system being discussed, with each
finding being clearly described with a short meaningful name,
an identifier, a full description and a justification or reference to
further evidence to support the finding. All findings should be
reported, even if not directly relevant to the original sponsor’s
request, as they may well be useful to other stakeholders. Inevitably
many findings tend to be critical in some way, so balancing them
with some positive findings about what the system does well and
expressing negative ones tactfully will help to produce a report
that is perceived to be valuable and balanced and is accepted by
those affected by it. This can take some thought and practice, but
is an important skill along with the more obvious skills of sound
judgement and technical knowledge.

As the findings are being considered and written, it is usually the
case that evidence is missing or needs to be reanalysed or appraised,
leading to iteration from this step back into the previous steps in
the process.

4.8. Step 6: create conclusions for the sponsor

Ultimately the assessment exercise has been undertaken for a
particular sponsor, or perhaps a specific group of sponsors. The
sponsor almost certainly had particular questions in mind when
they asked for the assessment to be performed and it is important to
answer these questions or present other specific recommendations
to address shortcomings that have been identified.

This is achieved by adding a “conclusions” section to the report
(or creating a separate short report for the sponsor) that answers
the explicit and implicit questions being asked by the sponsor who
commissioned the assessment and presents any other recommen-
dations that are required. Given that sponsors are often executive
level managers, a separate short report that focuses on their specific
questions is more likely to be read than a full assessment report.

In many cases, this part of the report may be little more than
summarising, highlighting or restating findings that were already
presented elsewhere, but in other cases answering the sponsor’s
specific questions may lead to new conclusions that were not sim-
ply findings from the study. In this situation it may be necessary to
again iterate back through the earlier steps of the study to perform
more analysis or gather more evidence to support a conclusion.

In cases where some conclusions are sensitive, they may need to
be presented separately to the rest of the report (a good example
being the answer to the question “should I continue to fund the
development of this system?”).

4.9. Step 7: deliver the findings and recommendations

The final step in the process is to deliver the findings and recom-
mendations to all of the stakeholders affected by them and those
who have provided input to the assessment exercise.

This is often a multi-step process, with a report being circulated
to those who are interested in the detail and one or more presenta-
tions being prepared to deliver findings or recommendations with
a particular slant or in a particular style for the audience concerned
(in most cases the presentation to the development team would be
quite different to the one needed for a business sponsor).

2040 E. Woods / The Journal of Systems and Software 85 (2012) 2034-2047

package Context[| Context Diagramu

CP, Worldscope,
Compustat, Asset
Master, ...

Visualisation Client

\

signal data

Reference Data Sources

System 1

calculated values,

Portfolio
Management
Systems

signals,
tcosts

Legacy Euro Analysis
Investment Data Sources System

Fig. 2. Context diagram for system 1.

All of these documents need to make their points clearly and
tactfully, in language that the audience will understand, stressing
positive aspects of the findings as well as the negative ones.

We have also found that it is important for the presentation of
the findings and recommendations to provide the context for the
assessment (who commissioned it, why it was commissioned, who
performed the assessment, why they were chosen to do so) and to
explain the process followed as well as just presenting the results
of the process.

5. Case study of TARA in use

As mentioned earlier, TARA was developed because of the need
to perform industrial architectural assessments in an environment
where an ATAM style assessment was unlikely to be successful. This
section describes two situations where the method has been used
for similar but separate system assessment exercises. In order to
respect the confidentiality of the organisation involved, the output
material from the reviews that is reproduced here has had some
detail removed, but otherwise it is reproduced in its original form.
Hence it contains the flaws, ambiguities and errors that most pieces
of industrial work contain, but it is an accurate representation of
the outputs of real review exercises.

5.1. System 1 assessment

As explained earlier, the TARA method was initially developed
in response to a request to provide an assessment of a quantita-
tive financial analysis system that had been developed in-house
by a major fund manager. The system had been developed within
part of the organisation that was not officially responsible for such
systems. The system appeared to be successful and the question
being asked was whether the system should be adopted more
widely in the organisation A senior business manager had inher-
ited ownership of the system due to a reorganisation and needed
to understand whether the architecture of the system was sound,
in order to decide whether he was going to sponsor its on-going
development (in the face of some opposition).

No documentation really existed for this system before the
review and some examples of the documentation produced as part
of the assessment are shown below.

The diagram in Fig. 2 shows the context diagram that was cap-
tured early in the assessment exercise, showing that the system

Table 1
Example requirements for System 1.

FR1 Quantitative model management and execution - the core
responsibility of the system is to allow quantitative model to be
defined and executed when required. The model defines the input
data, calculation status and output data that result in the generation of
the quantity and cost values, which are the system’s main output.

FR2 Override management - in many cases, users of the system will want
to be able to override individual values or groups of values in the
source data being used by the system. The system must provide the
ability to create, remove and report on overrides and how they have
affected the quantity value calculations.

NFR1 Performance - the key performance metric is the time taken to
perform a model calculation run and generate results. Currently this is
assessed to take in the order of 30 min in the system, but the target
time for this is about 10 min. The other important performance
requirement is the implicit requirement for the user interface to be
useably fast (defined by the organisation to mean never freezing,
responding instantaneously to local Ul events and new data being
available within 10's of a request).

NFR2 Scalability - the key scalability requirement is likely to be maintaining
the bound on the quantitative model execution time as the size and
sophistication of the model and the input data grow. This is likely to be
a key challenge in the future. A related scalability requirement is the
implicit requirement for the user interface to remain usable as the
amount of data in the system and in each model run grows. Finally, the
system’s user base will never be very large but it will probably need to
support 30 or 40 users per region in the long term.

takes inputs from a number of data sources and a legacy system and
supports a GUI client and produces outputs that are fed to portfolio
management systems.

Table 1 lists some of the requirements that were identified as
part of the assessment process. Again a formal and accurate set
of requirements was not available for the system, so they were
identified as part of the assessment.

When reviewing these requirements, it is interesting to note
how the two functional requirements (FR1 and FR2) are stated
in more definite terms than the quality requirements (NFR1 and
NFR2). This is because the key stakeholders, such as developers
and end-users, were able to clearly state the system’s functional
requirements but were not able to clearly articulate the qualities
that they required of the system. Hence the quality requirements
are the result of the assessor’s judgement and so are expressed in
less definite terms. This was obviously not ideal as the assessor’s
judgement might not have been correct, however we have found

E. Woods / The Journal of Systems and Software 85 (2012) 2034-2047 2041

Table 2
Example quantitative measures for System 1.

Table 3
Example findings and recommendations for System 1.

Implementation size ~1150 Java classes and 20 database tables. The Java
code is approximately 111,300 (raw) lines of code and

is ~230,000 Java byte code instructions.

Test size ~60 Java test classes which reference ~100 Java
classes in the implementation.
Structure Code organised into 10 modules and 8 layers, with

about 15% of the leaf level packages considered to be
“tangled” together.

Tangled code Engine - package com.abc.system. engine (46% of
the code tangled); server - package com.abc.system
(42% of the code tangled) and package com.abc.
system.service (31% of the code tangled);

Base - package com.abc . system (32% of the code is
tangled) and package com.abc.
system.cuboid.dimension (30% of the code tangled).

that once non-functional requirements are stated, glaring errors or
invalid assumptions are often pointed out by the key stakehold-
ers, so this was not a great problem in practice. Stakeholders seem
to find it much easier to tell people that the stated non-functional
requirements are wrong and correct them, than to write correct
ones themselves!

The UML component diagram in Fig. 3 shows one of the archi-
tectural sketches created when assessing this system, illustrating
its functional structure. This diagram was supported by basic tex-
tual descriptions of each of the elements in the diagram along with
some descriptive text.

Table 2 contains an illustrative sample of the quantitative met-
rics that were collected as part of the code analysis exercise for this
system.

Some of the findings and recommendations from the report are
shown in Table 3.

The first recommendation in the table (“recommendation 1) is
an example of a recommendation that was largely unrelated to the
specific findings of the architectural assessment (and was included
to answer a specific question from the sponsor of the exercise),
while the second is an example of one that is directly related to a
finding (the finding “finding 2” in the table).

The sponsor was pleased with the assessment report and
appeared to find it very useful because it allowed him to quickly
understand the strengths and weaknesses of the system and its
ability to meet its key requirements, so allowing him to make
important investment decisions that related to it. Somewhat to
our surprise, the development team also readily accepted its find-
ings and worked with the assessor to identify specific solutions
and actions to address the recommendations. The sponsor’s sat-
isfaction with the report was primarily due to the fact that it
directly answered the questions he had posed (rather than being
a generic architectural assessment, of the sort he had seen before)
and because it was organised in a way that clearly described the
system, with specific findings, supported by evidence (e.g. metrics)
and clear reasoning (e.g. the logic behind expert judgement). This
meant that the report was not particularly contentious, was easy to
get people to read and led to it being accepted positively by those
who had to act on its recommendations.

Interestingly, the main result of the exercise was a much higher
degree of organisational confidence that the strengths and weak-
nesses of the system were understood. In fact, although weaknesses
had been identified, the credibility of the development team’s (nat-
urally) positive opinion of their system was strengthened because
the weaknesses of the system were now understood and were per-
ceived toberectifiable, rather than being fundamental architectural
problems that would be expensive to resolve.

Finding 1 Model implementation - the quantitative model
implementation is very nicely done and a
significant innovation when compared to previous
such systems. The fact that the model definition is
now effectively data, rather than code, means that
it can be evolved much more quickly than previous
systems allowed and also (in principle) understood
and modified by people outside the development
team. It also opens up the possibility of
implementing multiple execution engines for
different scales and type of workload.

Finding 2 Internal dependencies - the inter-module,
inter-package and inter-class dependencies in the
system would benefit by a review with the
development team. In particular, the number of
inter-module dependencies suggests that many
sorts of change could be difficult in the future.
Some of dependencies within the modules also
appear to be very complicated and would benefit
from a review by the development team to ensure
that this level of inter-package and inter-class
coupling is really required.

Recommendation 1 Operational documentation - when installing and
running the system, people in other regions will
need simple, task oriented, installation and
operational documentation to guide them. This
could be as simple as a Wiki page of common

procedures.

Recommendation 2 Simplicity supporting variation - there is going to
be a need to support variation within the codeline
(for example providing different override logic in
one region compared to another). In order to
minimise the complexity of achieving this,
refactoring parts of the code to make the internal
dependencies as simple as possible is likely to pay
dividends later. Simplifying the dependencies will
also help people to understand the code.

5.2. System 2 assessment

Some months later a similar situation arose, by coincidence with
a similar system, another quantitative analytics system. Again, a
senior manager had inherited a system by virtue of a reorganisation
and needed to understand what he had become responsible for. In
this case, it was assumed that the system in question was going to be
used as the global strategic system for the kind of processing that it
was responsible for, but no architectural assessment had been per-
formed to support this decision. The manager in question, having
seen the earlier assessment’s outputs, asked for a similar assess-
ment to be performed for this second system, in order to assess its
“fitness for purpose” in its proposed role.

The process followed for this assessment was largely the same
as for System 1, although because System 2 was older and its ability
to evolve was in question, the focus of the assessment placed more
emphasis on assessing the architecture’s ability to support change
than in the previous exercise.

Predictably, this assessment produced similar deliverables to
the previous assessment of System 1, but to better illustrate the
process, we present a slightly different set of outputs to the ones
shown in the previous section.

Fig. 4 shows the context diagram for System 2 that was cre-
ated as part of the exercise. This context diagram shows that
System 2 was also a data processing “pipe” taking inputs from a
set of databases, with quantitative parameters specified via other
interfaces, performing statistical processing on that data and writ-
ing the results to the file system.

System 2 loosely follows a “pipe and filter” architectural style
and so a data flow view was very relevant for capturing some

2042 E. Woods / The Journal of Systems and Software 85 (2012) 2034-2047

package Functonal[[§]) Functional View ﬂ

«components

«component» 5|

(947 Client Data
data Shrvice Service

System1 Server Application

— — — —auser— -

«component»

(@ Analytical
«components = mud}(QMu uod:l'ys‘.Mu
System1 Client
P «component» 5|
{ i Event Service
«components

poen & e

P «components

«use»

scomponents =)
System1 Model Executor I

«components]
System1 Database

wuser Model Service | _ _ _

Coherence

wuse» Cache

;{ «components =]

Analytics =] |
Serviee | _ _ _ _ _ _
«use»

ausen |

Fig. 3. Functional view sketch for System 1.

of the important relationships within the system and was pro-
duced as part of the assessment. The diagram from this view is
reproduced in Fig. 5. This view clearly shows the classic linear pro-
cessing “pipes” which System 2’s functional elements are organised
into.

One of the models usually produced during a TARA review is a
code module structure analysis, to show the system’s code mod-
ules and the dependencies between them. This provides visibility
of the system’s real functional element (or “component”) archi-
tecture and whether it is as the designer intended. Given the age
of System 2 and the concerns about evolution, this analysis was

particularly relevant for this system and the result of the analy-
sis can be seen in the dependency diagram in Fig. 6. This analysis
highlighted the fact that although the module dependencies of Sys-
tem 2 form a recognisable structure, they do not clearly reflect the
system’s asserted architecture and they form a complicated struc-
ture with many cycles in the dependency graph. This finding was a
valuable output of the exercise.

Some examples of the commentary as to how well System 2
met its requirements are shown in Table 4. A couple of examples of
the findings that were reported for the assessment of System 2 are
shown in Table 5.

package Context[£ Context U

Override Tool

Weight Tool

o
Investment Data Sources
e.g.
Worlds S
Copel] - ~ e signal data
-~
= signal
datd
.. SAS dala Reference Data Sources
set files oy
~ —1

S—
File Sources

Analytical Interface

filesystem
universes
calculated values,

signals,

tcosts

Database

Fig. 4. Context diagram for System 2.

E. Woods / The Journal of Systems and

Software 85 (2012) 2034-2047 2043

package Functional[DalaFlowU

«artifacts (] _«flow» [signal implementation _“""i"
signal source data
«artifacts 0 __ .|Signalimplementation |
signal source data
wfiows «flows»

«artifacts 0 I’ Signal Implementation
signal source data -
wflows

i aflown

eartfactr [
sl data file |

wartifactr [AnalyticsCombiner
signal data file

aartifact»s [|

|
I
signal data file ¢ﬂo+

artfacts [
analytics data file

Fig. 5. Data flow information view for System 2.

The sponsor of this exercise also received the assessment very
positively and the development team accepted most of the findings
too (even though some of the findings were more critical than in
the first case and had to be expressed tactfully). Again, the sponsor’s
satisfaction from the report stemmed from its focus on answer-
ing his specific concerns and its fact and evidence based approach.
The fact that the findings were factual, fair and backed up by firm

evidence (rather than simply being opinions) also helped with the
acceptance of the results by the development team.

6. Evaluation of the approach

The TARA method has now been used successfully to assess a
small number of systems and it has been successful in use, albeit

(% drilldown
eammemmeT sicians e = - e 1
IR ¥ \ e
175 .
8 datasource :

ymmm————>

> S L e S
Pl B T
S RN R

1

'

)

]

'

|

'

'

]

1

1

Iy

]

|

1l I

|

~ 00

-~ i '

S

N ta 1

1 I

] ||.

| R

] P

\ R

- | 'll

" \ R

0 | R

H Bt et TH A B |

H [] !t

1] ' '] |I '

1 [it

: Vo of it

------- 1)] b4] |' !

' 1] U 4] i1

————————— ™ I

decae > VWY e

i B stat i

E > i
o= - I,) H

meosiiiiiieen ! Y

1 it

] vt i

1 i]

i i

] 1))
H ’

l 183 2l
ks £ CE, l i
. _1-1.\\1\.1.\-.1-.‘.\\.\ S : % s

--_--.._--..-.-_-.__-_---:‘““ w IW‘
.................... VH
ﬁmath

Fig. 6. Module dependencies for System 2.

2044 E. Woods / The Journal of Systems and Software 85 (2012) 2034-2047

Table 4
Requirements assessments for System 2.

Derived value data
generation

The initial part of the process (signal data processing) is
performed by specific Java classes, containing code to
extract the signal data from one or more data sources
and to perform any initial processing required for it to be
useful. The latter part of the process (merging and
statistical processing) is performed by the
ValueCombiner (according to configuration settings) and
the Java transformation classes, running in
Transformation Queues (the definition of the transforms
to use also being part of the system configuration). This
appears to work well and obviously provides enough
flexibility for the current strategies being supported.

Data visualisation
and analysis

System 2 does not provide data visualisation and
analysis capabilities, the assumption being that portfolio
managers, researchers and other interested parties will
use other tools for these tasks. The lack of a server in the
system’s architecture means that there is no obvious
way of remedying this without integrating a lot of code
from other systems or a lot of development work.

Scalability The simple batch based programs that System 2 uses
mean that it probably exhibits quite good scalability
requirements, at least to moderate scalability degrees. It
is possible to split the workload up across many batch
program invocations so that a lot of work can be done in
parallel provided that the data dependencies allow this.
The fact that the system also writes its signal data to
intermediate files for the data pipelines to use means
that signal data need only be generated once and is
shared between compute runs, again helping with
scalability. Scalability challenges are likely to emerge if
very complicated calculations are defined that need to
merge many large signals and then perform long
pipelines of transformations on the result.

Table 5
Example Findings for System 2.

Overall structure As reported earlier, the module structure of the
system is very complicated and looks quite
confused. This is probably the result of
extensive evolution (see earlier) but it makes
the system difficult to understand at the
detailed level, and would make large-scale
modification, extension or repurposing
difficult.

Standardisation The code of System 2 has obviously been
developed by a number of people in a number
of styles since it was originally created. It does
not appear to follow any particularly strong
coding or design conventions and while this
obviously does not affect how the software
runs, it does make it more difficult to
understand, extend and maintain.

in a specific environment. As explained earlier, sample size is small
(and only relates to one organisation) but so far the method has
proved to be useful when applied by a small number of architects.
Given its simplicity, it is worth briefly considering what has made
TARA successful and also where its weaknesses are.

Experience of using TARA suggests that the main reasons that it
has been successful are:

e Simplicity — people are often suspicious of what they perceive
as “high ceremony” methods containing many techniques with
strange names that they think look like “common sense”. TARA
addresses this by using a very low ceremony approach that is
easy to explain and deliberately does not try to introduce further
named techniques as part of its application.

e Structure - the approach brings structure and standardisation to
the assessment process in a lightweight way. Both assessors and

stakeholders find this useful as it helps to ensure a balanced pro-
cess that does not overlook important factors. Compared to the
typical ad hoc practices found in most industrial settings, this is
a useful step forwards.

Speed - the benefit of being able to explain what you're going to
doin 10 min and do it in 2 or 3 days, write it up in another couple
of days and deliver the results in a couple of hours cannot be over-
stated. The speed of the process overcomes many objections to
architectural assessment and often allows the technique to be
used to establish enough credibility to allow the idea of more
comprehensive assessments to be discussed.

Use of implementation artefacts — integrating architectural design
representation with an analysis of the system’s implementation
with facts derived from the production environment help to val-
idate the results of the exercise and provide evidence to help
people accept its findings.

Simple and focused outputs - the outputs of TARA are all easily
comprehensible, directly answer a set of sponsor questions and
contain a lot of useful information; in some cases the TARA report
is the only architectural description information that exists for
the system being considered.

Concise outputs - the report for a system tends to be about
5000-8000 words, with 3 or 4 diagrams, so the results are easy
to read and comprehend (although this is really the result of the
report format rather than the method itself).

Conversely, the weaknesses that the method shows in practice
are:

e Reliance on expert judgement - all architectural assessment meth-
ods rely on expert judgement to some degree, however TARA is
very reliant on the knowledge and judgement of the assessor who
is performing the assessment. The method does not mandate par-
ticular stakeholder input or work to find a consensus between
different stakeholder groups (although some parts of the pro-
cess may result in this, such as the requirements fit analysis).
This means that an assessor with strong domain and organisa-
tion knowledge, yet perceived as independent, is required and
such a person may not always be available.

No trade-off analysis - the method does not explicitly lead the
assessor through a consideration of the system’s design decisions
and the trade-offs inherent in them (although the consideration
of systemrequirements does result in some consideration of this).
An assessor can perform trade-off analysis at any point in the
process, but the method does not require this.

Structure based - a related point is that while more sophisticated
methods like ATAM are really analysing the design process, the
design decision options and the tradeoffs that they imply, TARA
has a different focus. This method focuses on the architectural
structures of the system and it is usually used when at least part
of the system already exists, so less effort is spent considering the
decisions and tradeoffs inherent in the design, and more effort
assessing the architecture that is being implemented and how
suitable it is for the requirements it must meet.

Relatively shallow - the simple approach and low resource invest-
ment of TARA assessment means that the insight achieved is
relatively shallow compared to more sophisticated approaches.
The results of a TARA assessment should be treated with some
caution and parts of the assessment reconsidered should they
appear to lack evidence or be in contradiction with other expert
opinion.

Most of these strengths and weaknesses stem from the funda-
mental simplicity of the method and probably cannot be addressed
effectively while still keeping the characteristic simplicity of TARA
that is necessary in the situations where it is to be used. Where a

E. Woods / The Journal of Systems and Software 85 (2012) 2034-2047 2045

more sophisticated method is needed, and the environment will
allow its application, then such methods exist already and do not
need to be reinvented.

7. Selecting an architectural assessment approach

A noted earlier, Jan Bosch observed that there are four types
of architectural assessment, namely scenario based assessment,
simulation, mathematical modelling and expert judgement (Bosch,
2000). When considering how to perform these assessments, we
used this taxonomy to consider what options were available to help
assess the systems concerned.

We quickly came to the conclusion that mathematical and sim-
ulation based approaches were not particularly attractive for the
kind of assessment that was needed in our situation. This was for a
number of reasons. Firstly, the systems already existed and so could
be directly tested rather than creating a mathematical or simulation
model and testing it. Secondly, we found that the qualities that we
wanted to assess (such as functional fit to requirements, production
reliability, simplicity of implementation and scalability) were not
particularly amenable to mathematical and simulation based anal-
ysis at reasonable cost. Finally, even if a modelling or simulation
approach had been available, interpreting the results would have
still required expert judgement with organisational and domain
knowledge.

Having said this, it is important to acknowledge that mathe-
matical models can be created for investigating system reliability
or scalability, and simulation models can investigate a number of
aspects of behaviour of a proposed system. However, as has been
noted by others (Abowd et al., 1997; Martensson et al., 2003),
building a model of the system that is comprehensive enough to
provide reliable results is expensive and experience suggests that
such models require a great deal of analysis and tuning in order to
produce meaningful results for a particular investigation, so they
often do not have a good return on investment in practice. It is also
worth noting in passing that a survey of the main computer science
literature databases suggested that there are not very many math-
ematical or simulation based methods that have been thoroughly
developed and tested in the research domain, let alone applied
widely in practice.

When considering the scenario-based approach, we already
knew that scenarios were practical and useful and that there was a
large amount of research literature available on the subject of using
scenarios for assessment (see the surveys Dobrica and Niemela,
2002; Babar and Gorton, 2004) and few industrial case studies
(such as Kettu et al., 2008). However, our experience had also sug-
gested that defining a comprehensive set of high quality scenarios
was quite an expensive process, particularly when compared to
a more informal, expert-judgement based approach. In this par-
ticular situation, an additional concern was that the process of
defining scenarios seems quite artificial when done by one per-
son; much of the value of defining scenarios is found in their ability
to focus stakeholder attention in important areas and to encour-
age useful discussion about requirements and priorities. So while
we knew that scenarios were a useful approach, it was not obvious
that they were worth the investment in this particular case, or that
the required stakeholder commitment would be forthcoming.

This left the option of expert judgement, which as explained
above, was the approach taken, while structuring the process into
the simple steps that became the TARA method. As already dis-
cussed, expert judgement has a number of significant limitations,
most importantly its reliance on the knowledge, independence
and experience of the assessor, and the relatively shallow level
of assessment when compared with a more thorough process.
However, it is very efficient and easy to justify and some of its

weaknesses can be balanced by an awareness of its limitations. In
this environment it appeared to be the approach that would be
most likely to succeed.

A useful side-effect of considering a number of approaches was a
fairly clear set of criteria that could be used to identify the situations
in which the different approaches would work. This allows an asses-
sor to judge when it may be prudent to select an expert-judgement
based method like TARA rather than a more comprehensive and
expensive approach.

Mathematical evaluation methods are likely to be the correct
choice when the following conditions hold:

e Animportant characteristic of interest of the system being evalu-
ated can be clearly and verifiably represented as a mathematical
model (e.g. where the concurrency in a system can be analysed
using a Petri-net model or the throughput of a system can be
estimated as a series of algebraic equations).

e An assessor is available who can confidently create and analyse
the mathematical model to draw conclusions from it and com-
municate them clearly to others. For realistically sized examples,
this often implies the availability of a tool that allows the model
to be captured and analysed.

e The mathematical model can be created and tested at a cost that

is significantly lower than creating and testing a prototype or

simply testing the system if it exists.

In most cases, an existing and proven mathematical modelling

formalism needs to exist already and to have been applied suc-

cessfully to similar problems. (Otherwise the assessment is really

a research activity rather than a routine architectural assess-

ment.)

Simulation based evaluation methods can range from symbolic
mathematical approaches to implementation prototypes and are
likely to be an effective approach when the following conditions
hold:

e A high fidelity simulation of the system under assessment can be
created in a simulation technology, at a cost that is significantly
smaller than creating a skeleton version of the system (or testing
the system directly if it already exists).

e The characteristics of interest of the system under assessment
can be reliably simulated using the simulation technology chosen.
(For example, if memory usage under load is a key quality to be
assessed, then a simple functional simulation, while possibly still
useful, is unlikely to suffice.)

e The early assessment of the characteristics of interest is suffi-
ciently important to commit significant resources to simulating
the system, rather than just developing it incrementally (as sim-
ulation is likely to be significantly more expensive than the other
assessment approaches).

e An assessor is available who has sufficient skill with the simula-

tion technology to allow a simulation to be created that will allow

reliable insights to be gained about the system.

In nearly every case, simulation requires a proven simulation

modelling notation and tool to be available and to be usable by

the assessor(s), or for the assessors to be capable of building

a high fidelity prototype using standard software development

technology.

Scenario based evaluation methods are probably the best under-
stood approach to architectural assessment, both from a research
perspective and an industrial practice point-of-view. They have
relatively few prerequisites and are likely to be successful when
the following fairly simple conditions hold:

2046 E. Woods / The Journal of Systems and Software 85 (2012) 2034-2047

e The need for architectural assessment is well understood and a
strong stakeholder commitment to the process exists. This will
result in stakeholders being willing to be involved in the creation
and validation of a set of scenarios that will allow the key qualities
of the system to be explored.

e The assessors and stakeholders can commit a significant amount
of time in order to achieve a thorough assessment. The amount
naturally varies by stakeholder and according to the size of sys-
tem, but for a IMLOC information system, an estimate might be
1.5-2 days for non-technical stakeholders and 4-5 days for key
technical stakeholders such as architects and production opera-
tions managers.

e The assessors have enough experience with the assessment
method in use to allow them to apply it fluently and adapt it
confidently to the situation at hand.

The success of expert-judgement based evaluation methods is
more likely to be context-dependent. Although they are simple
techniques, they do have some quite specific conditions that are
likely to be required for them to be effective:

e Strong sponsorship and specific (and legitimate) questions are
needed from an authoritative sponsor in the organisation, in
order to provide the assessor with direction, legitimacy and
access to the people and resources they need.

e The assessor needs enough organisational and domain knowl-
edge and inter-personal skill, to allow them to perform the
assessment in a self-guided fashion and make sound judgements,
without extensive stakeholder input and direction.

e The assessor needs to have a good knowledge of software archi-
tecture evaluation techniques so that they can judge which
techniques to apply to their specific situation (if any).

e The assessor needs to have a good technical knowledge of the
type of system that they are assessing to allow them to interpret
the information they gather and draw valid conclusions from it.

e The assessor needs to be given access to the system’s implemen-
tation its production instance.

In summary, considering the situation in which most indus-
trial software architects need to use architectural assessment,
mathematical and simulation-based methods are usually quite
expensive options. They will occasionally be useful when a mod-
elling approach is available that neatly matches the problem and
the question to be answered, but in many cases their cost and com-
plexity are difficult to justify.

Scenarios will often be the best answer for assessing an indus-
trial software architecture and they have been used successfully
in practice. The major caveat with using a formal scenario based
method is that significant stakeholder involvement is needed in
order to obtain maximum benefit from them and so justify their
cost. They are perhaps the most obvious choice when the need for
assessment is clear and external consultants are engaged to per-
form the evaluation, or where an in-house team of assessors is
available.

Expert judgement is arguably the weakest form of assessment,
but is also the easiest to justify and execute. It requires an explicit
understanding of its weaknesses and a focus on both a specific set
questions to be answered and drawing conclusions based on gath-
ered facts rather than personal opinions. It will however often be
the only practical approach for many industrial architectural eval-
uations and so understanding how to apply it successfully is an
important step in improving industrial practice.

8. Further work

While this paper describes an industrial case study and an
assessment method that was derived from it, there are a number
of possible avenues for further research-oriented work.

Firstly, areview of the literature on software architecture assess-
ment methods suggests that lightweight industrial methods have
not been included in the major studies (such as Dobrica and
Niemela, 2002). Methods such as LAAAM and TARA and industrial
experience such as that related in (Kettu et al., 2008) are a related
but separate group of experiences, which could usefully be sur-
veyed and studied in order to relate them to the methods that have
emerged from the research environment.

Secondly, while a lot of research has been performed in the area
of architectural assessment of software systems, experience sug-
gests that industrial use of its results is relatively rare. Assessing
the current state of industrial practice (particularly if performed at
a deeper level than a “friends and family” survey) would be a useful
input into the research domain.

Finally, a major open question relating to the TARA approach is
its repeatability and applicability outside the organisations that we
are familiar with. Reports of attempts to apply it by those uncon-
nected to its creators would be a useful validation or nullification
of its usefulness.

9. Summary and conclusions

This paper set out to do three things: (a) to explain why scenario
based assessment methods are not always used in industry; (b)
to explain a simple less sophisticated approach which has proved
useful as an initial starting point for architectural assessment; and
then (c) to illustrate the approach by showing how it had been
used on two system assessment exercises and the results that it
produced.

While scenario based assessment approaches can produce good
results, they can be quite complicated exercises to run, requiring
significant amounts of time from a large group of people. The ben-
efits may not be immediately apparent to many of the participants
and the sophistication of some methods makes them daunting in
some environments.

However, a frequent situation in an industrial context is for an
architect to be asked for their opinion as to the “quality” of an exist-
ing system and this implies the need for some sort of architectural
assessment activity.

In order to allow us to structure architectural assessment exer-
cises where we could not embark on full-blown scenario based
methods, we defined the Tiny Architectural Review Approach
(TARA) which is a simple method which can be used by a single
assessor or a small group of assessors and is not predicated on
gaining the attention and large amounts of time from the system’s
stakeholders.

We have used TARA for a number of assessment exercises, a cou-
ple of which form the case study in this paper, and have found it to
be an effective approach within its limitations. It has both allowed
us to assess systems and report our findings and recommendations
in a structured way. It also helped us to gain enough confidence
from the sponsoring managers to start conversations about the role
of architectural assessment and where it was worth considering
committing more effort to it.

The conclusion we have drawn from this experience is that
it is beneficial to have simple, less formal options for archi-
tectural assessment to compliment the more established and
sophisticated approaches. Simple methods are valuable in sit-
uations where the focus is an existing system or where the

E. Woods / The Journal of Systems and Software 85 (2012) 2034-2047 2047

resources and commitment for a more significant effort cannot be
gathered.

Acknowledgements

I would like to thank the reviewers of the earlier WICSA con-
ference paper, on which this paper is based, and the attendees at
the conference, in particular Len Bass, who came to the paper ses-
sion to listen to the paper presentation, asked interesting questions
and made a number of constructive suggestions. I would also like
to thank the JSS reviewers who helped to improve the paper con-
siderably by making many useful suggestions. Finally, I am grateful
to Dr. Rabih Bashroush who also reviewed the paper and made a
number of helpful recommendations on how to improve it.

References

Abowd, G., Bass, L., Clements, P., Kazman, R., Northrop, L., Zaremsk, A., 1997. Recom-
mended Best Industrial Practice for Software Architecture Evaluation. Technical
Report CME/SEI-96-TR-025, Software Engineering Institute.

Babar, M.A., Gorton, I, 2004. Comparison of scenario-based software architec-
ture evaluation methods. In: Asia-Pacific Software Engineering Conference, pp.
600-607.

Barbacci, M., Ellison, R.J., Lattanze, AJ., Stafford, J.A., Weinstock, C.B., Wood, W.G.,
2003. Quality Attribute Workshops, Technical Report, CMU/SEI-2003-TR-01,
Software Engineering Institute.

Bashroush, R., Spence, I, Kilpatrick, P., Brown, T.J., 2004. Towards an automated
evaluation process for software architectures. In: 8th IASTED International Con-
ference on Software Engineering (SE2004), pp. 54-58.

Bengtsson, P., Lassing, N., Bosch, J., van Vliet, H., 2004. Architecture-level modifia-
bility analysis (ALMA). Journal of Systems and Software 69, 1-2.

Bengtsson, P.O., Bosch, J., 1999. Architecture level prediction of software main-
tenance. In: Proceedings of the Third European Conference on Software
Maintenance and Reengineering, pp. 139-147.

Bosch, J., 2000. Design and Use of Software Architectures: Adopting and Evolving a
Product-Line Approach. Addison-Wesley Professional, Reading.

Carriere S.J., 2009. It's Pronounced Like Lamb Not Like Lame, http://technogility.
sjcarriere.com/2009/05/11/its-pronounced-like-lamb-not-like-lame (retrieved
10.04.12).

Clements P.C., 2000. “Active Reviews for Intermediate Designs,” Technical Report
CMU/SEI-2000-TN-009, Carnegie Mellon University.

Dobrica, L., Niemela, E., 2002. A Survey on software architecture analysis methods.
IEEE Transactions on Software Engineering 28 (7), 638-653.

Duenas,].C.,de Oliveira, W.L.,de 1a Puente,].A., 1998. A software architecture evalua-
tion model. In: Proceedings of the Second International ESPRIT ARES Workshop,
pp. 148-157.

Garlan, D., Bachmann, F., Ivers,]., Stafford, J., Bass, L., Clements, P., Merson, P., 2010.
Documenting Software Architectures: Views and Beyond, 2nd ed. Addison-
Wesley Professional, Upper Saddle River, NJ.

Kazman, R., Abowd, G., Bass, L., Clements, P., 1996. Scenario-based analysis of soft-
ware architecture. IEEE Software 13 (6), 47-55.

Kazman, R., Klein, M., Barbacci, M., Lipson, H., Longstaff, T., Carriere, S.J., 1998.
The architecture tradeoff analysis method. In: Proc. Fourth International
Conference on the Engineering of Complex Computer Systems (ICECCS 98),
pp. 68-78.

Kettu, T., Kruse, E., Larsson, M., Mustapic, G., 2008. Using architecture analysis to
evolve complex industrial systems. Lecture Notes in Computer Science 5135,
architecting dependable systems V, pp. 326-341.

Lassing, N., Rijsenbrij, D., van Vliet, H., 1999. On software architecture analysis of
flexibility, complexity of changes: size isn’t everything. In: Proceedings of the
Second Nordic Software Architecture Workshop (NOSA 99), pp. 1103-1581.

Madrtensson, F., Jonsson, P., Bengtsson, P.O., Grahn, H., Mattsson, M., 2003. A case
against continuous simulation for software architecture evaluation. In: Applied
Simulation and Modelling (ASM2003), pp. 97-105.

Molter, G., 1999. Integrating SAAM in domain-centric and reuse-based development
processes. In: Proc. Second Nordic Workshop Software Architecture (NOSA 99),
pp. 1103-1581.

Obbink, H., Kruchten, P., Kozaczynski, W., Postema, H., Ran, A., Dominic, L., Kazman,
R., Hilliard, R., Tracz, W., Kahane, E., 2002. Software Architecture Review and
Assessment (SARA) Report, Version 1.0.

Olumofin, F.G., Misic, V.B., 2005. Extending the ATAM Architecture Evaluation to
Product Line Architectures, Technical Report 05/02, Department of Computer
Science, University of Manitoba.

Parnas, D.L., Weiss, D.M., 1987. Active design reviews: principles and practices.
Journal of Systems and Software 7 (4), 259-265.

Pooley, R]., Abdullatif, A.A.L., 2010. CPASA: continuous performance assessment of
software architecture. In: 17th IEEE International Conference on the Engineering
of Computer-Based Systems, pp. 79-87.

Tang, A., Kuo, F.-C,, Lau, M.F., 2008. Towards independent software architecture
review. In: 2nd European Conference on Software Architecture (ECSA 2008),
pp. 306-313.

Zalewski, A., 2007. Beyond ATAM: architecture analysis in the development of large
scale software systems. Lecture Notes in Computer Science 4758, software archi-
tecture, pp. 92-105.

Eoin Woods is lead technology architect for one of the equity business lines at
a major international investment bank. His main technical interests are software
architecture, distributed systems, computer security, and data management; he is
co-author of the well-received book “Software Systems Architecture: Working With
Stakeholders Using Viewpoints and Perspectives”, published by Addison Wesley.
Eoin can be contacted via his web site at www.eoinwoods.info.

