
Chapter 19
How Software Architecture can Frame,
Constrain and Inspire System Requirements

Eoin Woods and Nick Rozanski

Abstract Historically a system’s requirements and its architectural design have
been viewed as having a simple relationship where the requirements drove the
architecture and the architecture was designed in order to meet the requirements. In
contrast, our experience is that a much more dynamic relationship can be achieved
between these key activities within the system design lifecycle, that allows
the architecture to constrain the requirements to an achievable set of possibilities,
frame the requirements making their implications clearer, and inspire new require-
ments from the capabilities of the system’s architecture. In this article, we describe
this relationship, illustrate it with a case study drawn from our experience and
present some lessons learned that we believe will be valuable for other software
architects.

19.1 Introduction

Historically, we have tended to view a system’s requirements and its architectural
design as having a fairly simple relationship; the requirements drove the architec-
ture and the architecture was designed in order to meet the requirements. However
this is a rather linear relationship for two such key elements of the design process
and we have found that it is desirable to strive for a much richer interaction between
them.

This chapter captures the results of our experience in designing systems, through
which we have found that rather than just passively defining a system structure to
meet a set of requirements, it is much more fruitful to use an iterative process that
combines architecture and requirements definition. We have found that this allows
the architectural design to constrain the requirements to an achievable set of
possibilities, frame the requirements making their implications clearer, and inspire
new requirements from its capabilities.

Our experience has led us to believe that the key to achieving this positive
interplay between requirements and architecture is to focus on resolving the forces

P. Avgeriou et al. (eds.), Relating Software Requirements and Architectures,
DOI 10.1007/978-3-642-21001-3_19, # Springer-Verlag Berlin Heidelberg 2011

333



inherent in the underlying business drivers that the system aims to meet. This
process is part of a wider three-way interaction between requirements, architecture
and project management. In this chapter we focus on the interaction between the
requirements and architectural design processes, while touching on the relationship
that both have with project management.

We start by examining the classical relationship between requirements and
architectural design, before moving on to describe how to achieve a richer, more
positive, interaction between requirements and architecture. We then illustrate the
approach with a real case study from the retail sector. In so doing, we hope to show
how architects need to look beyond the requirements that they are given and work
creatively and collaboratively with requirements analysts and project managers in
order to meet the system’s business goals in the most effective way.

In this work, we focus on the architecture and requirements of information
systems, as opposed to real-time or embedded systems. We have done this because
that is the area in which we have both gained our architectural experience and
applied the techniques we describe in the case study.

19.2 Requirements Versus Architecture

While both are very familiar concepts, given the number of interpretations that exist
of the terms “system requirements” and “software architecture” it is worth briefly
defining both in order to clearly set the scene for our discussion.

To avoid confusion over basic definitions, we use widely accepted standard
definitions of both concepts, and they serve our purposes perfectly well.

Following the lead of the IEEE [7] we define systems requirements as being “(1)
a condition or capability needed by a user to solve a problem or achieve an
objective; (2) a condition or capability that must be met or possessed by a system
or system component to satisfy a contract, standard, specification, or other formally
imposed document; or a documented representation of a condition or capability as
in (1) or (2).”

For software architecture, we use the standard definition from the ISO 42010
standard [8], which is “the fundamental organization of a system embodied in its
components, their relationships to each other, and to the environment, and the
principles guiding its design and evolution.”

So for the purposes of our discussion we view requirements as being the
definition of the capabilities that the system must deliver, and the architecture
of the system being its structure and organization that should allow the system to
provide the capabilities described by its requirements.

Gathering requirements is a complicated, subtle and varied task and for large
systems the primary responsibility for this usually lies with a specialist require-
ments analyst (or “requirements engineer” depending on the domain and termino-
logy in force). The task is usually divided into understanding the functions that the
system must provide (its functional requirements) and the qualities that it must

334 E. Woods and N. Rozanski



exhibit while providing them (its non-functional requirements, such as security,
scalability, usability and so on). There are many approaches for gathering
requirements and the output of requirements-gathering activities varies widely
[6, 17]. However, in our experience, requirements can be defined via formal
written textual paragraphs, descriptions of scenarios that the system must be able
to cope with, descriptions of typical usage of the system by one of its users, tables
of measurements and limits that the system must meet or provide, user interface
mock ups or descriptions, verbal discussions between individuals and so on.
In reality the requirements of the system are usually found in a combination of
sources –in, across and between the different requirements artefacts available.

For a large system, the design of the system’s key implementation structures
(its “architecture”) is also a complicated and multi-faceted activity. It usually
involves the design of a number of different but closely related aspects of the
system including component structure, responsibility and interaction, concurrency
design, information structure and flow, deployment approach and so on. One of
the major difficulties with representing a system’s architecture is this multi-faceted
nature, and in response to this, most architectural description approaches today are
based on the idea of using multiple views, each capturing a different aspect of
the architecture [4, 11, 19]. Hence the output of an architectural design exercise is
usually a set of views of the system, with supporting information explaining how
architecture allows the system to meet its key requirements, particularly its non-
functional requirements (or quality properties as they are often known).

Finally, it is worth drawing a distinction between both the requirements and
architecture of the system and their documented representations. In informal
discussion we often merge the two concepts and refer to “requirements” to mean
both the actual capabilities that the system must provide and the written form that
we capture them in. Even more likely is confusion as to whether the term “the
architecture” refers to the actual architecture of the system or the architectural
documentation that explains it. In both cases, we would point out (as we and
others have elsewhere, such as [2]) that whether or not they are clearly defined
and captured, all systems have requirements and an architecture. We would also
suggest that whether the latter meets the needs of the former is one of the significant
determinants of the success for most systems. For this discussion, we focus on the
real-world processes for requirements capture, architecture design and the interplay
between them.

19.3 The Classical Relationship

Recognition of the importance of the relationship between the requirements and the
design of a system is not a recent insight and software development methods have
been relating the two for a long time.

The classical “Waterfall” method for software development [18] places
requirements analysis quite clearly at the start of the development process and

19 How Software Architecture can Frame, Constrain and Inspire System Requirements 335



then proceeds to system design, where design and architecture work would take
place. There is a direct linkage between the activities, with the output of the
requirements analysis processing being a (complete) set of specifications that the
system must meet, which form the input to the design process. The design process is
in turn a problem-solving activity to identify a complete design for the system that
will allow it to meet that specification. The waterfall method is not really used in
practice due to its rigidity and the resulting high cost of mistakes (as no validation of
the system can be performed until it is all complete) but it does form a kind of cultural
backdrop upon which other more sophisticated approaches are layered and compared.
From our current perspective, the interesting thing about the waterfall approach is that
although primitive, it does recognise the close relationship of requirements analysis
and system architecture. The major limitation of the model is that it is a one-way
relationship with the requirements being fed into the design process as its primary
input, but with no feedback from the design to the requirements.

The well-known “spiral” model of software development [3] is one of the better-
known early attempts at addressing the obvious limitations of the waterfall
approach and has informed a number of later lifecycles such as Rational’s RUP
method [12]. The spiral model recognises that systems cannot be successfully
delivered using a simple set of forward-looking activities but that an iterative
approach, with each iteration of the system involving some requirements analysis,
design, implementation and review, is a much more effective and lower-risk way to
deliver a complicated system. The approach reorganises the waterfall process into a
series of risk-driven, linked iterations (or “spirals”), each of which attempts to
identify and address one or more areas of the system’s design. The spiral model
emphasises early feedback to the development team by way of reviews of all work
products that are at the end of each iteration, including system prototypes that can
be evaluated by the system’s main stakeholders. Fundamentally the spiral model
focuses on managing risk in the development process by ensuring that the main
risks facing the project are addressed in order of priority via an iterative prototyping
process and this approach is used to prioritise and guide all of the system design
activities.

A well-known development of the spiral model is the “Twin Peaks” model of
software development, as defined by Bashar Nuseibeh [15] which attempts to
address some limitations of the spiral model by organising the development process
so that the system’s requirements and the system’s architecture are developed in
parallel. Rather than each iteration defining the requirements and then defining
(or refining) the architecture to meet them, the Twin Peaks model suggests that the
two should be developed alongside each other because “candidate architectures
can constrain designers from meeting particular requirements, and the choice of
requirements can influence the architecture that designers select or develop.”
While the spiral model’s approach to reducing risk is to feedback to the require-
ments process regularly, the Twin Peaks model’s refinement of this is to make the
feedback immediate during the development of the two. By running concurrent,
interlinked requirements and architecture processes in this way the approach aims
to address some particular concerns in the development lifecycle, in particular

336 E. Woods and N. Rozanski



“I will know it when I see it” (users not knowing what their requirements are until
something is built), using large COTS components within systems and rapid
requirements change.

Most recently, the emergence of Agile software development approaches [14] has
provided yet another perspective on the classical relationship between requirements
and design. Agile approaches stress the importance of constant communication,
working closely with the system’s end users (the “on-site customer”) throughout
the development process, and regular delivery of valuable working software to allow
it to be used, its value assessed and for the “velocity” (productivity) of the develop-
ment team to be measured in a simple and tangible way. An important difference to
note between the Agile and spiral approaches is that the spiral model assumes that the
early deliveries will be prototype software whereas an Agile approach encourages the
software to be fully developed for a minimal feature set and delivered to production
and used (so maximising the value that people get from it, as early as possible). In an
agile project, requirements and design artefacts tend to be informal and lightweight,
with short “user stories” taking the place of detailed requirements documentation
and informal (often short-lived) sketches taking the place of more rigorous and
lengthy design documentation. The interplay between requirements and design is
quite informal in the Agile approach, with requirements certainly driving design
choices as in other approaches, and the emphasis being on the design emerging from
the process of adding functions to the system, rather than “upfront” design. Feedback
from the design to the requirements is often implicit: a designer may realize the
difficulty of adding a new feature (and so a major piece of re-design – refactoring – is
required), or spot the ability to extend the system in a new way, given the system’s
potential capabilities, and suggest this to one of the customers who may decide to
write a new “user story.”

In summary, the last 20 years have seen significant advances in the approach
taken to relating requirements and design, with the emphasis on having design work
inform the requirements process as early as possible, rather than leaving this until
the system is nearly complete. However the remaining problem that we see with all
of these approaches is that architecture is implicitly seen as the servant of the
requirements process. Our experience suggests that in fact it is better to treat these
two activities as equal parts of the system definition process, where architecture is
not simply constrained and driven by the system’s requirements but has a more
fundamental role in helping to scope, support and inspire them.

19.4 A Collaborative Relationship for Requirements
and Architecture

We have found that the basis for defining a fruitful relationship between require-
ments and architecture needs to start with a consideration of the business drivers
that cause the project to be undertaken in the first place. We consider the business
drivers to be the underlying external forces acting on the project, and they capture

19 How Software Architecture can Frame, Constrain and Inspire System Requirements 337



the fundamental motivations and rationale for creating the system. Business drivers
answer the fundamental “why” questions that underpin the project: why is devel-
oping the system going to benefit the organization? why has it chosen to focus its
energies and investment in this area rather than elsewhere? what is changing in the
wider environment that makes this system necessary or useful? Requirements
capture and architectural design, on the other hand, tend to answer (in different
ways) the “what” and “how” questions about the system.

It is widely accepted that business drivers provide context, scope and focus for
the requirements process, however we have also found them to be an important
input into architectural design, by allowing design principles to be identified and
justified by reference to them. Of course the requirements are also a key input to
the architectural design, defining the capabilities that the architecture will need
to support, but the business drivers provide another dimension, which helps the
architect to understand the wider goals that the architecture will be expected to
support. These relationships are illustrated by the informal diagram in Fig. 19.1.

Having a shared underlying set of drivers gives the requirements and architec-
ture activities a common context and helps to ensure that the two are compatible
and mutually supportive (after all, if they are both trying to support the same
business drivers then they should be in broad alignment). However, it is important
to understand that while the same set of drivers informs both processes, they may be
used in quite different ways.

Some business drivers will tend to influence the requirements work more directly,
while others will tend to influence architectural design more. For example, in a retail
environment the need to respond to expansion from a single region where the
organisation has a dense footprint of stores into new geographical areas is likely to
have an effect on both the requirements and the architecture. It is clear that such drivers
could lead to new requirements in the area of legislative flexibility, logistics and
distribution, the ability to have multiple concurrent merchandising strategies, infor-
mation availability, scalability with respect to stores and sales etc. However, while
these requirements would certainly influence the architecture, what is maybe less
obvious is that the underlying business driver could directly influence the architecture

motivation,
business context
priorities

Requirements
Capture

Architectural
Design

Business
Drivers

motivation,
business context
priorities

technical context,
constraints,
possibilities

needs,
aspirations,
dependencies
priorities

Fig. 19.1 Business drivers, requirements and architecture

338 E. Woods and N. Rozanski



in other ways, such as needing to ensure that the system is able to cope with relatively
high network latency between its components or the need to provide automated and/or
remote management of certain system components (e.g. in-store servers). These
architectural decisions and constraints then in turn influence the requirements that
the system can meet and may also suggest completely new possibilities. For example,
the ability to cope with high network latencies could both limit requirements, perhaps
constraining user interface options, and also open up new possibilities, such as the
ability for stores to be able to operate in offline mode, disconnected from the data
center, while continuing to sell goods and accept payments.

The other non-technical dimension to bear in mind is that this new relationship
between requirements and architecture will also have an effect on the decision-
making in the project. Whereas traditionally, the project manager and requirements
engineer/analyst took many of the decisions with respect to system scope and
function, this now becomes a more creative three-way tension between project
manager, requirements engineer and software architect as illustrated by the infor-
mal diagram in Fig. 19.2.

All three members of the project team are involved in the key decisions for the
project and so there should be a significant amount of detailed interaction between
them. The project manager is particularly interested in the impact of the architect’s
and requirements analyst’s decisions on scope, cost and time, and the requirements
analyst and architect negotiate and challenge each other on the system’s scope,
qualities and the possibilities offered by the emerging architecture.

19.5 The Interplay of Architecture and Requirements

As we said in the previous section, the relationship between requirements and
architecture does not need to be a straightforward flow from requirements
“down” to architecture. Of course, there is a definite flow from the requirements

Requirements
Analyst

Project
Manager

Software
Architectscope,

cost,
time

scope,
cost,
time

scope,
qualities,
possibilities

Fig. 19.2 The three decision
makers

19 How Software Architecture can Frame, Constrain and Inspire System Requirements 339



analysis activity into the architectural design, and the requirements are one of the
architect’s primary inputs. But rather than being a simple one-way relationship, we
would suggest that it is better to aim for a more intertwined relationship in the spirit
of Twin Peaks, but developing this theme to the point where architecture frames,
constrains and inspires the requirements as both are being developed. So we need to
consider how this process works in more detail.

Bashar Nuseibeh’s “Twin Peaks” model, as shown in Fig. 19.3, shows how the
requirements definition and architectural design activities can be intertwined so
that the two are developed in parallel. This allows the requirements to inform the
architecture as they are gathered and the architecture to guide the requirements
elicitation process as it is developed. The process of requirements analysis informing
architectural design is widely accepted and well understood, as the requirements are a
primary input to the architectural design process and an important part of architec-
tural design is making sure that the requirements can be met. What is of interest to us
here is how the architectural design process influences the requirements-gathering
activity and we have found that there are three main ways in which this influence
manifests itself.

19.5.1 The “Framing” Relationship

Starting with the simplest case, we can consider the situation where the architecture
frames one or more requirements. This can be considered to be the classical case,
where the requirements are identified and defined by the requirements analysis
process and then addressed by the architecture. However, when the two are being
developed in parallel then this has the advantage that the architecture provides

Requirements Architecture

Specification

DependentIndependent

Detailed

General

Level
of

detail

Implementation
dependence

Fig. 19.3 Twin peaks (from [15])

340 E. Woods and N. Rozanski



context and boundaries for the requirements during their development rather than
waiting for them to be completed. Such context provides the requirements analyst
with insights into the difficulty, risk and cost of implementing the requirements and
so helps them to balance these factors against the likely benefits that implementing
the requirement would provide. If this sort of contextual information is not provided
when eliciting requirements for a system then there is the distinct danger that “blue
sky” requirements are specified without any reference to the difficulty of providing
them. When the architecture is developed in parallel with the requirements,
this allows the architect to challenge requirements that would be expensive
to implement. In cases where they are found to be of high value, consider early
modifications or extensions to the system’s architecture to allow them to be
achieved at lower cost or risk.

For example, while a “surface” style user interface might well allow new and
innovative functions to be specified for a system, such devices are relatively imma-
ture, complicated to support, difficult to deploy and expensive to buy, so it would be
reasonable for any requirements that require such interfaces to be challenged on the
grounds of cost effectiveness and technical risk. The architecture doesn’t prevent this
requirement from being met, but investigating its implementation feasibility in
parallel with defining the requirement allows its true costs and risks to be understood.

19.5.2 The “Constraining” Relationship

In other situations, the architect may realize that the implementation of a require-
ment is likely to be very expensive, risky or time-consuming to implement using
any credible architecture that they can identify. In such cases, we say that the
architecture constrains the requirements, forcing the requirements analyst to focus
on addressing the underlying business drivers in a more practical way.

To take an extreme example, while it is certainly true that instant visibility of
totally consistent information across the globe would provide a new set of capabilities
for many systems, it is not possible to achieve this using today’s information systems
technology. It is therefore important that a requirements analyst respects this con-
straint and specifies a set of requirements that do not require such a facility in order to
operate. In this case, understanding the implementation possibilities while the
requirements are being developed allows a requirement to be highlighted as impossi-
ble to meet with a credible architecture, so allowing it to be removed or reworked
early in the process.

19.5.3 The “Inspiring” Relationship

Finally, there are those situations where the architectural design process actually
inspires new aspects of the emerging requirements, or “the solution drives the

19 How Software Architecture can Frame, Constrain and Inspire System Requirements 341



problem” as David Garlan observed [5]. However while Garlan was commenting
on this being possible in the case of product families (where the possible solutions
are already understood from the existing architecture of the product family),
we have also seen this happen when designing new systems from scratch. As
the architecture is developed, both from the requirements and the underlying
business drivers, it is often the case that architectural mechanisms need to be
introduced which can have many potential uses and could support many types
of system function. While they have been introduced to meet one requirement,
there is often no reason why they cannot then also be used to support another,
which perhaps had not been considered by the requirements analyst or the
system’s users.

An example of this is an architectural design decision to deliver the user
interface of the system via a web browser, which might be motivated by business
drivers around geographical location, ease of access or low administrative overhead
for the client devices. However, once this decision has been made, it opens up
a number of new possibilities including user interface layer integration with other
systems (e.g. via portals and mash ups), the delivery of the interface onto a much
wider variety of devices than was previously envisaged (e.g. home computers
as well as organisational ones) and accessing the interface from a wider variety
of locations (e.g. Internet cafes when employees are travelling as well as office and
home based locations). These possibilities can be fed back into the requirements
process and can inspire new and exciting applications of the system. This effec-
tively “creates” new requirements by extending the system’s possible usage into
new areas.

So as can be seen there is great potential for a rich and fruitful set of interactions
between requirements analysis and architectural design, leading to a lot of design
synergy, if the two can be performed in parallel, based on a set of underlying
business principles.

In practice, achieving these valuable interactions between requirements and
architectural design means that the requirements analysts and the architects must
work closely together in order to make sure that each has good visibility and
understanding of the other’s work and that there is a constant flow of information
and ideas between them.

As we said in the previous section, it is also important that the project
manager is involved in this process. While we do not have space here to discuss
the interaction with the project manager in detail, it is important to remember
that the project manager is ultimately responsible for the cost, risk and schedule
for the project. It is easy for the interplay between requirements and architecture
to suggest many possibilities that the current project timescales, budget and risk
appetite do not allow for, so it is important that the project manager is involved
in order to ensure that sound prioritisation is used to decide what is achievable
at the current time, and what needs to be recorded and deferred for future
consideration.

342 E. Woods and N. Rozanski



19.6 Case Study

19.6.1 The Problem

A major clothing retailer was experiencing problems with stock accuracy of size-
complex items in its stores, leading to lost sales and a negative customer perception.

A size-complex such as a men’s suit is an expensive item which is sold in many
different size permutations. A store will typically only have a small stock of each size
permutation (for example, 44-Regular) on display or in its stockroom, since larger
stock levels take up valuable store space and drive up costs in the supply chain.

Manual counting of size-complex items is laborious and error-prone. Even
a small counting error can also lead to a critical stock inaccuracy, where the store
believes it has some items of a particular size in stock but in fact has none. Critical
inaccuracies lead to lost sales when customers cannot find the right size of an item
they want to buy.

According to inventory management systems, the retailer’s stock availability
was around 85% for size-complex lines (that is, only 15% were sold out at any one
time). However stock sampling indicated that real availability was as low as 45%
for some lines, and that critical inaccuracy (where the line is sold out but the stock
management system reports that there is stock available in store) was running as
high as 15%. This was costing millions of pounds in lost sales, and also driving
customer dissatisfaction up and customer conversion down (so customers were
leaving stores without buying anything).

19.6.2 Project Goals

The goal of the project was to drive a 3–5% upturn in sales of size-complex lines by
replacing error-prone and time-consuming manual stock counting with a more
accurate and efficient automated system. By reducing the time taken to do a stock
count from hours to a few minutes, the retailer expected to:

• Increase the accuracy of the stock count;
• Reduce the level of critical inaccuracy to near zero;
• Drive more effective replenishment;
• Provide timely and accurate information to head office management.

19.6.3 Constraints and Obstacles

The new system was subject to some significant constraints because of the environ-
ment into which it was to be used and deployed.

19 How Software Architecture can Frame, Constrain and Inspire System Requirements 343



• The in-store equipment had to be simple to use by relatively unskilled staff with
only brief training.

• The in-store equipment had to be robust and highly reliable. The cost of repair or
replacement of units in stores was high and would eat away at much of the
expected profits.

• The system had to be compatible with the infrastructure currently installed in
stores. This was highly standardised for all stores and comprised: a store server
running a fairly old but very stable version of Microsoft Windows; a wireless
network, with some bandwidth and signal availability constraints in older stores
because of their physical layout; and a low-bandwidth private stores WAN
carrying mainly HTTP and IBM MQ traffic.

• The system had to be compatible with the infrastructure and systems which ran
in Head Office and in partner organisations.

• The solution had to minimise the impact on the existing distribution channels
and minimise any changes that needed to be made by suppliers and distributors.

• The solution had to minimise any increase in material or production costs.

Some further constraints emerged during the early stages of the project as
described below.

19.6.4 Solution Evolution

The eventual architectural solution emerged over a number of iterations.

19.6.4.1 Initial Design

RFID (Radio Frequency Identification) was chosen as the underpinning technology
for contactless data transfer. The initial concept was very simple: a passive (non-
powered) RFID tag would be attached to each garment, and would store its UPC
(universal product code, analogous to a barcode) which defined the garment’s size,
stroke etc.

A portable RFID reader would read the UPCs of all the garments in the area
being counted, collate and filter the data, and send the resulting counts to the central
stock management system in the form of a standard “stock correction” (Fig. 19.4).

This design illustrated the framing relationship between architecture and
requirements. The retailer had some experience of RFID for stock-taking, but
only at the pallet level, not for individual items.

19.6.4.2 First Iteration

Further investigation revealed that there were two types of RFID tag available for
use, read-only (write once) and read-write (write many times). Read-write tags

344 E. Woods and N. Rozanski



would be required for the solution above, since the UPC would need to be written to
the tag when it was attached to the garment, rather than when the RFID tag was
manufactured. However read-write tags were significantly more expensive and less
reliable, so this approach was ruled out.

Ruling out read-write tags was a fairly significant change of direction, and was
led primarily by cost and architectural concerns. However, since it had a significant
impact on the production and logistics processes, the decision (which was led
by architects) required the participation of a fairly wide range of business and IT
stakeholders.

Since each RFID tag has a world-unique serial number, a second model was
produced in which the serial number of a read-only tag would be used to derive the
UPC of the garment. Once the tag was physically attached to the garment, the
mapping between the tag’s serial number and the garment’s UPC would be written
to a mapping table in a database in the retailer’s data center (Fig 19.5).

There were again some significant implications to this approach, which required
the architects to lead various discussions with store leaders, garment manufacturers,
logistics partners and technology vendors. For example, it was necessary to develop
a special scanning device for use by manufacturers. This would scan the RFID

garment 
with tag

portable 
reader

central stock 
management 

systemcount

operational 
systems

management 
information 
systems

garment 
with tag

portable 
reader mapping

MANUFACTURE

STOCK COUNTING

mappings

serial

serial

mapping 
table

Fig. 19.5 First iteration

garment
with tag

portable
reader

central stock
management

systemcount

operational
systems

management
information
systems

UPC

Fig. 19.4 Initial design

19 How Software Architecture can Frame, Constrain and Inspire System Requirements 345



serial number using an RFID scanner, capture the garment’s UPC from its label
using a barcode scanner, and transmit the data reliably to the mapping system at the
retailer’s data center. Since manufacturers were often located in the Far East or
other distant locations, the device had to be simple, reliable and resilient to network
connectivity failures.

This iteration illustrated the constraining relationship between architecture and
requirements. The immaturity of the read-write RFID technology, and the potential
cost implications of this approach led to a solution that was more complex, and
imposed some significant new requirements on garment manufacturers, but would
be significantly more reliable and cheaper to operate.

19.6.4.3 Second Iteration

It was initially planned to derive the UPC of the counted garment at the time that the
tag serial numbers were captured by the in-store reader. However the reader was a
relatively low-power device, and did not have the processing or storage capacity to
do this. An application was therefore required to run on the store server, which
maintained a copy of the mapping data and performed the required collation before
the counts were sent off (Fig. 19.6).

This iteration also illustrated the constraining relationship between architecture
and requirements.

19.6.4.4 Third Iteration

The next consideration was product returns, an important value proposition for this
retailer. If a customer were to return a product for resale, then any existing tag

garment
with tag

portable
reader

central stock
management

systemcount

operational
systems

management
information
systems

garment
with tag

portable
reader mapping

MANUFACTURE

STOCKCOUNTING

mappings

serial

serial

mapping
table

store
servertag

IDs

Fig. 19.6 Second iteration

346 E. Woods and N. Rozanski



would need to be removed, since it might have been damaged, a new tag attached,
and the mapping table updated before the item was returned to the shop floor. This
required a special tag reader on the shop floor, and also at the retailer’s distribution
centers.

This led to the third major iteration of the solution architecture as shown in
Fig. 19.7.

This iteration illustrated the inspiring relationship between architecture and
requirements. It was primarily the consideration of the architecture that prompted
the addition of specific returns-processing capabilities to the solution, especially the
provision of the specialized tag readers for this purpose.

19.6.4.5 Further Refinements

Discussions were also held with the team that managed the stock system. It already
had the capability to enter stock corrections through a data entry screen, but an
automated interface would need to be added and it was necessary to confirm that the
system could deal with the expected volume of updates once the system was rolled
out to all stores. This became an architectural and a scheduling dependency that was
managed through discussions between the architects and project managers in both
teams.

After surveying the marketplace it became clear that the reader would have to be
custom-built. Manufacture was handed off to a third party but software architecture
considerations drove aspects of the reader design. It needed to be portable, with its

garment
with tag

portable
reader

central stock
management

systemcount

operational
systems

management
information
systems

garment
with tag

portable
reader mapping

MANUFACTURE

STOCKCOUNTING

mappings

serial

serial

mapping
table

RETURNS

garment
with tagreader

mapping

store
servertag

IDs

Fig. 19.7 Third iteration

19 How Software Architecture can Frame, Constrain and Inspire System Requirements 347



own battery, and had to shut down gracefully, without losing data, if the battery ran
out. It also had to present a simple touch-screen user interface.

Another constraint which emerged in the early stages of the project was around
customer privacy. The retailer was very keen to protect its brand and its reputation,
and the use of RFID to tag clothing was becoming controversial. In particular there
was a concern amongst privacy groups that retailers would be able to scan clothes
when a customer entered a store, and use the information to identify the customer
and track their movements.

To allay any customer concerns, the tag was designed so that it could be removed
from the garment and discarded after purchase. The retailer also met with the
privacy groups to explain that their fears were unfounded, but needed to be careful
not to reveal too much detail of the solution before its launch. Architects were
involved in the technical aspects of this and also supported the retailer’s Marketing
Department who produced a leaflet for customers to explain the tags.

19.6.5 Project Outcome

The system was very successful. The initial pilot showed a consistent uplift in sales
for counted lines, which exceeded the project goals. It was popular with staff and
business users, and there was no customer resistance to the tags since they could be
removed once the item had been paid for.

There were some further lessons from the pilot that were incorporated into the
solution. For example, the readers proved to have a significantly larger operating
range than expected and care needed to be taken not to count stock that was in the
stock room rather than on the shop floor.

19.7 Evaluation of Approach

We have found the iterative approach to be an effective way of highlighting, early
in the software development lifecycle, areas where requirements are missing or
unclear, and which may otherwise only have become apparent much later in the
project. By proposing and evaluating an initial architecture, architecturally signifi-
cant problems and questions can also be made visible, and the right answers
determined, before there has been costly investment in developing software that
may later have to be changed.

Using iteration and refinement allows stakeholders to focus on key parts of
the solution, rather than the whole, and to develop the overall architecture in
stages. It also ensures that the proposed architecture can be considered in the
light of real-world constraints, such as time, budget, skills or location, as well as
just “architectural correctness.”

348 E. Woods and N. Rozanski



There are some weaknesses to this approach however. There will be a significant
amount of uncertainty and change in the early stages of the lifecycle, and if ongoing
changes to the requirements or architecture are not communicated to everyone
concerned, then there is a significant risk that the wrong solution will be developed.

Also, many stakeholders are uncomfortable with this level of uncertainty. Users
may insist that the requirements are correct as initially specified, and object to
changes they view as being IT-driven rather than user-driven. Developers, on the
other hand, may struggle to design a system whose requirements are fluid or
unclear.

Finally, an iterative approach can be viewed by senior management as extending
the project duration. Explaining that this approach is likely to lead to an earlier
successful delivery can be difficult.

All of these problems require careful management, oversight and discipline on
the part of the project manager, the architect and the requirements analyst.

19.8 Lessons for Architects

The intertwined, parallel approach to relating system requirements and architectural
design is the result of our experience working as information system architects,
during which time we have attempted to use the ideas of the software architecture
research community as they have emerged. As a result of this experience, we have not
only refined our ideas about how an architect should work in the early stages of the
definition of a new system, but have also learned some useful lessons which we try to
capture here to guide others who are attempting the same type of work.

The lessons that we have found to be valuable during our attempts to work
collaboratively with requirements analysts and project managers are as follows.

• Early Involvement – it is important for you to be involved during the definition
and validation of requirements and plans, so aim to get involved as early in the
system definition process as possible, even if this involves changing normal
ways of working. Offering to perform early reviews and performing some of the
requirements capture or planning yourself (particularly around non-functional
requirements) can be a useful way into this process.

• Understand the Drivers – work hard to elicit the underlying business drivers that
have motivated the commissioning of the system or project you are involved in.
Often these drivers will not be well-understood or explicitly captured and so
understanding and capturing them will be valuable to everyone involved in the
project. Once you have the drivers you can understand the motivations for the
project and start to think about how design solutions can meet them.

• Intertwined Requirements and Architecture – we have found that there are real
benefits to the “twin peaks” approach of intertwining parallel requirements
gathering and architectural design activity. You should build a working relation-
ship with the requirements analyst(s) that allows this to happen and then work

19 How Software Architecture can Frame, Constrain and Inspire System Requirements 349



together with them in order to develop the requirements and the architecture
simultaneously with reference to each other.

• Work Collaboratively – as well as working in parallel and referencing each
other’s work, this approach needs a collaborative mindset on the parts of
the requirements analyst and the architect, so aim to establish this early and
try to work in this way. Of course, “it takes two to tango” so you may not always
be successful if the requirements analyst is unused to working in this way, but in
many cases if the architect starts to work in an open and collaborative way,
others are happy to do so too.

• Challenge Where Needed – as requirements start to emerge, do not be afraid
to challenge them if you feel that they will be prohibitively expensive or risky to
implement, or you spot fundamental incompatibilities between different sets of
requirements that will cause severe implementation difficulties. It is exactly this
sort of early feedback that is one of the most valuable outputs of this style of
working.

• Understand Costs and Risks–during the early stages of a large project you are in
a unique position to understand the costs and risks of implementing proposed
requirements, as it is unlikely that a project manager or a requirements analyst
will have a deep knowledge of the design possibilities for the system. You
should work with the project manager to understand the costs and risks inherent
in the emerging requirements, and then explain them to the other decision
makers on the project to allow more informed decisions to be made.

• Look for Opportunities – the other dimension that you can bring to the project in
its early stages is an understanding of opportunities provided by each of the
candidate architectural designs for the system. Your slightly different perspec-
tive on the business drivers, away from their purely functional implications,
allows a broader view that often results in an architecture that has capabilities
within it that can be used in many different ways. By pointing these capabilities
out to the requirements analyst, you may well inspire valuable new system
capabilities, even if they cannot be immediately implemented.

In short, our experience suggests that rather than accepting a set of completed
system requirements, architects need to get involved in projects early and working
positively and collaboratively with the requirements analysts and project managers
to shape the project in order to increase its chances of successful delivery, while
making the most of the potential that its underlying architecture can offer.

19.9 Related Work

As already noted, many other people working in the software architecture field have
explored the close relationship between requirements and software architecture.

The SEI’s Architecture Trade-off Analysis Method – or ATAM – is a structured
approach to assessing how well a system is likely to meet its requirements, based on
the characteristics of its architecture [10]. In the approach, a set of key scenarios are

350 E. Woods and N. Rozanski



identified and analysed to understand the risks and trade-offs inherent in the design
and how the system will meet its requirements. When applied early in the lifecycle,
ATAM can provide feedback into the requirements process.

A related SEI method is the Quality Attribute Workshop – or QAW – which is a
method for identifying the critical quality attributes of a system (such as performance,
security, availability and so on) from the business goals of the acquiring organisation
[1]. The focus of QAW is identification of critical requirements rather than how the
system will meet them, and so is often used as a precursor to ATAM reviews.

Global Analysis [16] is another technique used to relate requirements and
software architecture by structuring the analysis of a range of factors that influence
the form of software architectures (including organisational constraints, technical
constraints and product requirements). The aim of the process is to identify a set
of system-wide strategies that guide the software design to meet the constraints that
it faces, so helping to bridge the gap between requirements and architectural design.

As well as architecture centric approaches, there have also been a number of
novel attempts to relate the problem domain and the solution domain from the
requirements engineering community.

One example is Michael Jackson’s Problem Frames approach [9], which
encourages the requirements analyst to consider the different domains of interest
within the overall problem domain, how these domains are inter-related via shared
phenomena and how they affect the system being built. We view techniques like
problems frames as being very complimentary to the ideas we have developed here,
as they encourage the requirements analyst to delve deeply into the problem,
domain and uncover the key requirements that the architecture will need to meet.

Another technique from the requirements engineering community is the KAOS
method, developed at the universities of Oregon and Louvain [13]. Like Problem
Frames, KAOS encourages the requirements analyst to understand all of the
problem domain, not just the part that interfaces with the system being built, and
shows how to link requirements back to business goals. Again we view this as
a complimentary approach as the use of a method like KAOS is likely to help the
requirements analyst and architecture align their work more quickly than would
otherwise be the case, as well as understand the problem domain more deeply.

19.10 Summary

In this chapter we have explained how our experience has led us to realise that
a much richer relationship can exist between requirements gathering and architec-
tural design than their classical relationship would suggest. Rather than passively
accepting requirements into the design process, much better systems are created
when the requirements analyst and architect work together to allow architecture
to constrain the requirements to an achievable set of possibilities, frame the
requirements making their implications clearer, and inspire new requirements
from the capabilities of the system’s architecture.

19 How Software Architecture can Frame, Constrain and Inspire System Requirements 351



References

1. Barbacci M, Ellison R, Lattanze A, Stafford J, Weinstock C, WoodW (2003) Quality attribute
workshops (QAWs) 3rd edn. Technical report, CMU/SEI-2003-TR-016, Software Engineer-
ing Institute, Carnegie Mellon University

2. Bass L, Clements P, Kazman R (2003) Software architecture in practice, 2nd edn. Prentice
Hall, Englewood Cliffs

3. Boehm B (1986) A spiral model of software development and enhancement. ACM SIGSOFT
Softw Eng Notes 21(5):61–72

4. Clements P, Bachmann F, Bass L, Garlan D, Ivers J, Little R, Nord R, Stafford J (2002)
Documenting software architectures: views and beyond. Addison Wesley, Boston

5. Garlan D (1994) The role of software architecture in requirements engineering. In:
Proceedings of the second international conference on requirements engineering. University
of York, UK, 18–21 April 1994

6. Hull E, Jackson K, Dick J (2010) Requirements engineering. Springer Verlag, Berlin
7. Institution of Electrical and Electronic Engineers (1990) IEEE standard glossary of software

engineering terminology. IEEE Standard 610.12-1990
8. International Standards Organisation (2007) Systems and software engineering –

recommended practice for architectural description of software-intensive systems. ISO/
IEC Standard 42010:2007

9. Jackson M (2001) Problem Frames. Addison Wesley, Wokingham
10. Kazman R, Klein M, Clements P (2000) ATAM: a method for architecture evaluation.

Technical report, CMU/SEI-2000-TR-004, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh

11. Kruchten P (1995) The 4 + 1 view model of software architecture. IEEE Softw 12(6):42–50
12. Kruchten P (2003) The rational unified process: an introduction, 3rd edn. Addison-Wesley,

Boston
13. van Lamsweerde A, Letier E (2002) From object orientation to goal orientation: a paradigm

shift for requirements engineering. In: Proceedings of the radical innovations of software and
systems engineering, Venice, Italy, 7–11 October 2002. Lecture notes in computer science,
vol 2941. Springer, Heidelberg, pp 325–340

14. Larman C (2004) Agile and iterative development: a manager’s guide. Addison-Wesley,
Reading

15. Nuseibeh B (2001) Weaving together requirements and architectures. IEEE Comput 34
(3):115–119

16. Nord R, Soni D (2003) Experience with global analysis: a practical method for analyzing
factors that influence software architectures. In: Proceedings of the second international
software requirements to architectures workshop (STRAW). Portland, Oregon, 9 May 2003

17. Robertson S, Robertson J (2006) Mastering the requirements process, 2nd edn. Addison
Wesley, Reading

18. Royce W (1970) Managing the development of large software systems. In: Proceedings of
IEEE WESCON, vol 26. Los Alamitos, pp 1–9

19. Rozanski N, Woods E (2005) Software systems architecture: working with stakeholders using
viewpoints and perspectives. Addison Wesley, Boston

352 E. Woods and N. Rozanski


	Chapter 19: How Software Architecture can Frame, Constrain and Inspire System Requirements
	19.1 Introduction
	19.2 Requirements Versus Architecture
	19.3 The Classical Relationship
	19.4 A Collaborative Relationship for Requirements and Architecture
	19.5 The Interplay of Architecture and Requirements
	19.5.1 The ``Framing´´ Relationship
	19.5.2 The ``Constraining´´ Relationship
	19.5.3 The ``Inspiring´´ Relationship

	19.6 Case Study
	19.6.1 The Problem
	19.6.2 Project Goals
	19.6.3 Constraints and Obstacles
	19.6.4 Solution Evolution
	19.6.4.1 Initial Design
	19.6.4.2 First Iteration
	19.6.4.3 Second Iteration
	19.6.4.4 Third Iteration
	19.6.4.5 Further Refinements

	19.6.5 Project Outcome

	19.7 Evaluation of Approach
	19.8 Lessons for Architects
	19.9 Related Work
	19.10 Summary
	References


