
Using Architectural Perspectives

Eoin Woods
Artechra

www.artechra.com
eoin@artechra.com

Nick Rozanski
Artechra

www.artechra.com
nick@artechra.com

Abstract

A crucial aspect of the software architect’s role is to
ensure that a system based on their architecture will
exhibit the quality properties (performance, security,
availability and so on) that are important to their
stakeholders. A proven approach to help guide an
architect through the process of designing an architecture
is to use architectural views, based on formal viewpoint
definitions (such as those in the well known “4+1” set).
However, a practical problem we have found when using
existing viewpoint sets is the lack of guidance relating to
system qualities (as opposed to system structures) that
they provide. To address this problem, we identified a
complimentary concept, called the architectural
perspective [15], to provide an architect with practical
guidance as to how to ensure that their system exhibits the
right set of quality properties. This paper reviews the
idea of the architectural perspective and relates a specific
experience of applying them to the architectural definition
of an enterprise integration project for a financial
markets organisation, explaining the strengths and
weaknesses we found in the approach.

1 Introduction

Designing a software architecture is a complex
process, involving the creation of solutions to complex,
multi-faceted problems, that often do not have a single
optimal solution, but only a number of acceptable ones.
One particularly difficult aspect of the architectural
process is ensuring that a system will meet its quality
requirements (for security, performance, availability and
so on). While getting a system’s functionality correct is
obviously important, this point is moot for many systems
that are considered to be failures because they are lacking
in one or more critical non-functional qualities, such as
security or scalability.

Most software architects use an intuitive approach to
achieving quality properties, relying on a combination of
instinct, background knowledge and experience to guide
them through the design process. This intuition led
process often works well, as the number of useful,

effective large-scale computer systems attests to; indeed,
we used to work in this intuitive way, which served us
reasonably well for a long time. However we have found
that it has its limitations. In particular:
• It is difficult to share knowledge between architects to

allow successful approaches to be reused and painful
lessons avoided;

• Few architects can honestly claim deep expertise
across all of the possible quality property areas that
they have to work with and so there is always a danger
of focusing on an arbitrary set of properties because
these are the ones that the architect knows about; and

• The lack of a systematic approach increases the risk
that something important will be overlooked until it is
too late to address it.
In order to address these points, we attempted to

design a simple, yet systematic, approach to guide
architectural design for quality properties, based on our
experience as practicing information systems architects.

We call our approach Architectural Perspectives and
it provides a framework for structuring knowledge about
how to design systems to achieve particular quality
properties. In some ways, perspectives are similar to
architectural viewpoints [10], in that as a viewpoint
conventionally advises on how to create and describe a
particular type of architectural structure [9][12][14], a
perspective attempts to provide similar advice relating to
the cross view concerns of a particular quality property.

To take an example, a performance and scalability
perspective could contain advice to guide the architect
through a process of assessing their system’s performance
and scalability via various modelling techniques and
suggest tactics to apply (such as partitioning and
replication) if it is found wanting, as well as listing
common pitfalls to be aware of in this area (such as
contention and careless allocation of resources), along
with common solutions to these problems.

We believe that architectural perspectives are a useful
and novel approach for the following reasons.
• They are a knowledge sharing framework structured

around quality properties, as opposed to types of
architectural structure.

• The approach does not mandate any particular
architectural structure or style.

• Perspectives work well when combined with
viewpoints and so neatly extend an already proven
approach.

• The approach is the product of practitioner experience,
addressing a real need that we had.

• The approach has proven to be useful in practice.
Based on our experience of applying perspectives

ourselves, and with others, we feel that they have the
potential to help architects share knowledge about
designing for quality properties much more effectively
than is the case today. By documenting best practice and
proven solutions, in a practical concrete context, a set of
perspectives can help architects to share proven best
practice, standardise their approach to some aspects of
architectural design, reduce the risk involved in designing
for certain quality properties and improve communication
between architects, so facilitating discussion of
alternatives and options.

The remainder of this paper outlines the perspectives
approach and illustrates its use by means of a real project
example. Section 2 explains the approach and how to use
it; Section 3 describes an application of the approach to an
information systems development project; Section 4
outlines the strengths and weaknesses of the approach;
Section 5 explains the lessons learned while developing
the approach; Section 6 compares the approach to related
work; and Section 7 summarises the paper and presents
our conclusions.

2 Description of the Approach

2.1 Defining Architectural Perspectives

We developed the concept of the Architectural
Perspective (or just “Perspective”) in order to provide an
extensible framework, within which we could capture
knowledge about designing systems that need to exhibit
specific quality properties. From the outset, we aimed to
develop an approach that could be used with existing
viewpoint-based and architectural evaluation approaches.

Our definition of an architectural perspective is a
collection of activities, checklists, tactics and guidelines
to guide the process of ensuring that a system exhibits a
particular set of closely related quality properties that
require consideration across a number of the system’s
architectural views. In other words, a perspective is a
collection of guidance on achieving a particular quality
property in a system.

This wording and structure of the definition is similar
to that used for the definition of an architectural
viewpoint in IEEE standard 1471 [10]. This similarity is
intentional, as it is meant to suggest, that perspectives are
analogous to viewpoints (in the 1471 sense of the term)
but rather than addressing an aspect of the system’s
structure (as viewpoints developed to date conventionally

do) the perspective addresses an important quality
property. This said, there is a critical difference between
a viewpoint and a perspective: while a viewpoint is
realised directly as part of the architectural description
(i.e. as a view) a perspective does not result in the
creation of a single part of the architectural design, but
rather guides the architect to modify a number of the
existing views in order to achieve the quality properties
important for their system.

A perspective has a standard suggested structure, to
make the use of sets of perspectives easier and to ensure
that they all address a quality property in the same general
way. A perspective contains the following information:
• the Concerns that the perspective is addressing;
• the Applicability of the perspective to the different

possible architectural views of a system (and the types
of system to which the advice within it relates, if this
is not obvious);

• a set of possible Activities that are suggested as part of
the process of achieving the quality property (ideally
related to each other via a process to follow);

• a set of proven Architectural Tactics (i.e. design
strategies) [3] that the architect can consider as part of
their design;

• a list of common Problems and Pitfalls that the
architect should be aware of and common solutions to
them; and finally

• a Checklist that the architect can use to help ensure
that nothing has been forgotten.
As an example, consider what might be in a Security

perspective, to guide an architect in achieving a secure
system.

The concerns for the Security perspective would
include:
• Policy (the actions that difference principals can

perform on sensitive resources);
• Threats (the security threats that the system faces);
• Governance (the mechanisms for implementing the

policy securely, including authentication,
authorisation, confidentiality, integrity and
accountability);

• Availability (ensuring that attackers cannot prevent
access to a system); and

• Detection and Recovery from Breach (allowing
recovery when security fails).
The Security perspective is particularly applicable to

the Physical and Development architectural views (in
“4+1” terminology [12]), adding security related
hardware and software to the Physical view and setting
system wide security related standards within the
Development view. Changes could also be required to the
Logical view to support a secure implementation (e.g.
partitioning the system differently to allow access to be
controlled to sensitive parts of it).

The activities defined in the Security perspective
would include:
• Identification of sensitive resources;
• Definition of a security policy;
• Creation of a threat model;
• Design of a security implementation; and
• Assessment of security risks.

The activities in the Security perspective would be
inter-related by use of a process description (such as a
UML activity diagram) like the one in Figure 1.

Identify

Sensitive

Resources

Define Security

Policy

Identify Threats
To the System

Design Security
Implementation

Assess Security
Risks

[acceptable]

[unacceptable]

Figure 1. Security Perspective Process

The primary architectural tactics that the Security
perspective would explain and suggest could include:
• Application of recognised security principles (such as

least privilege, separation of responsibilities,
simplicity, auditing, secure default behaviour, not
relying on obscurity and so on);

• Principal identification mechanisms;
• Access control mechanisms;
• Information protection mechanisms;
• How to ensure accountability via auditing and non-

repudiation mechanisms;
• How to protect availability with hardware and

software system protection mechanisms;
• Integration approaches for existing technology;

• Provision of security administration; and
• Use of 3rd party security technology.

The common problems and pitfalls that the Security
perspective would list (and provide common solutions
for) would include:
• Complex security policies;
• Use of unproven security technology;
• Not designing for secure failure conditions;
• Not providing effective administration facilities;
• Driving the process by technology choice rather than

security threats;
• Ignoring the need for secure time sources;
• Leaving security as an afterthought;
• Embedding security policy in the application; and
• Use of ad-hoc technology to enforce security.

The Security perspective would also include a
checklist containing points such as:
• Is there a clear security policy that defines which

principals are allowed to perform which operations on
which resources?

• Is the security policy as simple as possible?
• Have security requirements been reviewed with

external experts?
• Has each threat identified in the threat model been

addressed to the extent necessary?
Space prevents us from presenting the entire

perspective, and it should be stressed that the above
presentation is only an outline, as our real Security
perspective is 20 pages long, but hopefully this gives a
flavour of the content that a perspective contains.

There are a large number of potential perspectives
that could be written and the set that will be of use to an
architect depends very much on the type of system that
they are working on: an architect working on vehicle
control systems is unlikely to use the same set of
perspectives as an architect working on a credit card
billing system. Indeed, it is important that perspectives are
written for a specific target audience so that inappropriate
advice is not included in them. That said, as with
viewpoints, we think it is likely that useful perspectives
can be written for certain broad system types.

For large scale information systems in particular
(which is the type of system that the authors work with)
we have found a good core set of perspectives to be:
• Security to ensure the ability of owners of resources in

the system to reliably control, monitor and audit who
can perform what actions on these resources as well as
the ability of the system to detect and recover from
failures in security mechanisms;

• Performance and Scalability to ensure the system’s
ability to predictably execute within its mandated
performance profile and to handle increasing
processing volumes;

• Availability and Resilience to ensure the system’s
ability to be fully or partly operational as and when

required, and to effectively handle failures which
could affect system availability; and

• Evolution ensuring system flexibility in the face of the
inevitable change that all systems experience after
deployment, balanced against the costs of providing
such flexibility.
Other perspectives that we have found applicable to

many information systems, but that are less widely
applicable than the core set suggested above, include:
• Internationalisation to ensure the systems

independence from any particular language, country
or cultural group;

• Accessibility to ensure the ability of the system to be
used by people with disabilities;

• Usability to ensure that people who interact with the
system can easily work effectively;

• Regulation to ensure the ability of the system to
comply with local and international laws, quasi-legal
regulations, company policies, and other rules and
standards;

• Location to ensure the ability of the system to
overcome problems brought about by the absolute
geographical location of its elements and the distances
between them; and

• Development Resource to ensure that the system can
be designed, built, deployed and operated within
known constraints around people, budget, time and
materials.
Based on our experience as architects of large

information systems, we have developed full definitions
of the first four perspectives listed above, as well as
outline definitions of the remainder. The definitions are
presented in the form of a book [15], aimed at practicing
software architects and those in training for the role.

2.2 Using Perspectives

We have found that a set of perspectives can play
three distinct roles for a software architect.

Firstly, perspectives act as a store of knowledge,
allowing knowledge related to achieving a particular
quality property to be gathered and represented in a
standardised way, so making it easy for the architect to
use them to extend their knowledge. It is important to
note that the perspective is a much more flexible and
much less constrained source of knowledge than a design
pattern or an attribute based architectural style. A
perspective documents things the architect should know
and do as well as simply a set of technical solutions
(although it can include these too, in the Architectural
Tactics section of the perspective).

Secondly, perspectives act as a guide to a novice
architect or an architect having to deal with a quality
property that they are not an expert in (a situation that
many architects meet routinely, even if they do not always

feel that they can admit it!) The information in the
perspective allows the architect to quickly learn what is
important about achieving the particular quality property
under consideration, provides them with a set of proven
activities and tactics to use and points out the likely
problems that will be encountered.

Finally, perspectives act as an aide mémoire for the
experienced architect working in an area that they are
familiar with. However, even in such cases, it is very
valuable to have standardised reference material that can
be quickly and conveniently accessed. When used in this
way, perspectives help the architect to work in a
systematic manner (in as much as they need to) and help
to avoid important details being overlooked.

The process of using a set of perspectives within a
viewpoint-based architectural design process is illustrated
by the UML activity diagram in Figure 2.

Analyse and

Understand Key

Requirements

Create a Candidate

Architecture

Apply Perspectives Modify Architecture

Perform Formal

Architectural

Evaluation

[acceptable properties]

[unacceptable
 properties]

Figure 2. Using Perspectives

As can be seen in the diagram, the architect starts by
understanding the key system requirements, which allows
him to select the appropriate set of viewpoints and
perspectives to use to guide the architectural design
process. Next, he produces a potential architectural design
to meet the system’s key requirements, at this stage
focusing primarily on the system’s functional structure.
Then, for each important quality property, the architect
uses the information in the corresponding perspective to
drive the process of ensuring that the system will exhibit
that quality property satisfactorily. In most cases, this will

mean changes to the architecture, which are reflected by
updating the views describing the architecture. Then,
when the architect believes that they have a satisfactory
architecture, it can go forward for formal architectural
evaluation, using a method like ATAM [6].

Obviously this description is a very idealised view of
the process, but it provides a useful mental model and we
have found it useful when explaining perspectives to other
architects. In reality of course, the experienced architect is
considering quality properties continually, during the
design process and is using viewpoints and perspectives
simultaneously, rather than in two distinct stages.

We term the process of using a perspective “applying
the perspective” to stress that the process of using a
perspective is primarily about making cross-view changes
to the architecture, rather than about creating a new
architectural design artifact. (This said, applying many
perspectives can actually produce outputs such as threat
models, performance models and so on, but these are
really supporting information rather than first-class
architectural design artifacts.) We also use this term to
reinforce the point that using a perspective is not just a
review process but is an active part of architectural
design, performed by the architect in order to produce an
acceptable architecture.

It is worth noting that the process presented here is
quite similar to the architectural design process that Jan
Bosch defines in his book [3]. While Bosch explains that
the architect must modify the architecture in order to
achieve the system’s desired quality properties, there is no
specific guidance on how to go about this. The
contribution that perspectives make to the process is
providing structure and specific advice on how to achieve
the quality properties that the system is lacking.

3 An Example Application of Perspectives

3.1 The Project

Like many organisations, a UK-based financial
institution had ended up with a large number of business
applications, many of which needed the same reference
information in order to perform their processing. The
types of information that needed to be shared between
systems included details of counterparties, countries,
financial exchanges, terms and conditions for financial
instruments, closing prices for financial products,
holdings of financial products and so on. This information
is characterised by changing relatively slowly (at least for
the uses that the systems this project was concerned with
put it to) with a daily or hourly update being sufficient.
However, when the information is duplicated and
maintained across a number of systems then inconsistency
nearly always occurs, maintaining the data becomes very
difficult and errors occur in business processing.

Where inter-system data integration had been
implemented, it had been done in a tactical “point to
point” manner, which had resulted in an inflexible
structure with many inter-system dependencies. The
solution identified for these problems was to create an
organisation-wide “Data Service” that could provide
reference information to any of the organisation’s systems
on a regular schedule, in the format that the target system
required. An important benefit of the Data Service is that
it acts to totally decouple the systems supplying the data
(the sources) from the systems consuming it (the targets),
without changing either.

The initial implementation of the system was batch
based, distributing data to the target systems according to
a regular schedule. The system was implemented using
Java and XML-based technologies, with all of the data
manipulation required being implemented using XSLT
[5], to isolate the data mapping in well defined places and
to allow it to be reused in future implementations. The
first delivery of the system linked two source systems to
one target system, supporting about 20 key business
entities, with support for two or three other systems being
scheduled for later iterations. This initial delivery
involved the development of about 60 data
transformations, a number of which were several
thousand lines long, containing quite complicated
mapping logic.

When the system runs, it extracts data from a number
of source systems using existing data-access interfaces,
converts it into a system-neutral organization wide data
model and then supplies the subsets of the data required
by each target system to these systems in their native
formats. Initially, the 20 key business entities supported
by the system resulted in several hundred megabytes of
raw input data being processed in each run, the system
neutral form of the data being several times this size.

The UML component diagram in Figure 3 illustrates
the functional structure of the system.

Source

System 1

Source
System 2

Target

System 1

Target

System 2

Data Service

Figure 3. Data Service Functional Structure

The two key quality properties that this system had to
exhibit were:
• Performance, in terms of throughput, because the

system needed to handle a reasonably large amount of
data (several hundred megabytes of raw data) in a
very limited amount of time; and

• Evolution, in terms of adding sources, targets and data
types easily, because without the ability to add new
data sources, target systems and data types the system
would rapidly become obsolete as the business
evolved.

3.2 The Use of Perspectives

A number of perspectives were used on the project,
but due to space limitations, we will describe how one
particular perspective – Performance and Scalability –
was applied and the effect that this had. However, we
will also briefly touch on how the Evolution perspective
was used.

Although the project was relatively simple, it was a
critical system for the organisation, it was the first attempt
to apply the implementation technology in that
organisation and it had to meet quite stringent quality
properties in order to be considered a success. For these
reasons, we found it involved enough to make a useful
case study for this paper.

Another interesting feature of this project was that
there were actually two architects, the architect
responsible for the project, who worked for the financial
institution (“the architect”) and one of the authors who
acted as a consultant to the organisation, advising on the
work to be performed, working full time in the project
team and mentoring the organisation’s architect during
the project (“the mentor”). This feature of the project
means that it also illustrates the different uses that
different architects can put perspectives to.

Due to the mentoring aspect of this project,
perspectives were applied in a relatively simplistic way,
with the architect being encouraged to understand the
system’s functional requirements thoroughly and design a
sound functional structure before focusing on achieving
particular quality properties. Once a candidate functional
structure was identified, the architect and the mentor used
the perspectives to refine it to meet the critical
performance and evolution qualities required.
Perspectives were a useful aid to process structuring, as
they encouraged the architect to work in a systematic
manner and provided the mentor with a metaphor to use
when explaining the process to the architect.

The Performance and Scalability perspective defines
the relevant concerns as being response time, throughput,
scalability, predictability, hardware resource requirements
and peak load behaviour. Using these concerns at the start
of the process helped the architect to understand what was
included (and excluded) from the performance exercise
and allowed context and clear objectives for the exercise
to be defined.

The activities the perspective suggests are capturing
performance requirements, creating and analysing
performance models and performance testing. The
documentation of these activities in the perspective
provided the architect with background information on
performance engineering (which he was not aware of
before) and acted as useful reference material to start
learning about them. Having said that, most of the
knowledge transfer was driven by the mentor, referring to
the perspective as needed.

A concrete result of following the process suggested
in the perspective was the creation of a performance
model for the system. While the perspective did not
contain enough detail for the architect to do this totally
independently, the information in the perspective did help
him to understand what he was doing and why and so
provided context for the additional information and
guidance provided interactively by the mentor.

Once a performance model and some representative
performance testing had been completed, it was
established that the system was likely to run acceptably
fast and to complete its processing within the processing
schedule required of it. However, the exercise did reveal
two important points. Firstly, 70% of the systems runtime
was consumed by the processing of two business entities
(out of a total of about 20) and secondly, the execution
time of the system was uncomfortably close to its
acceptable limit, considering that data volumes were
likely to increase in the future.

The insights gained by the performance modelling
and testing were valuable for two reasons. Firstly, they
allowed the architect to set realistic expectations for the
throughput that could be achieved and secondly, they
revealed the need for contingency planning at the

architectural design level in case of slower throughput
than expected or an unexpected increase in data volumes.

The Architectural Tactics section of the perspective
was used to consider possible design changes to increase
throughput, so that allowance could be made in the
architecture for their possible future implementation. The
tactics in the perspective included optimizing common
processing, decomposition and parallelization of long
operations, reducing contention via replication,
prioritizing processing, consolidation of related workload,
distribution of processing in time, minimizing the use of
shared resources and considering the use of asynchronous
processing. Particularly valuable tactics in this particular
situation were parallelization, prioritizing processing and
distributing processing in time. Possible approaches for
each were sketched to ensure that the proposed
architecture was compatible with them.

Finally, the problems and pitfalls contained in the
perspective were used to check that nothing important had
been overlooked. The problems and pitfalls documented
in the perspective include having imprecise performance
and scalability goals, an over-reliance on modelling, using
simple measures for complex cases, inappropriate
partitioning, invalid environment and platform
assumptions, too much indirection, concurrency related
contention, careless allocation of resources and ignoring
network and in-process invocation differences. While no
serious problems were found, having reviewed the list, we
did decide that we had relied too heavily on modelling
(over testing) and that some of our testing was assuming
that results from simple cases scaled linearly for more
complex cases. Both of these possible problems caused us
to revisit some of our performance work and in fact, we
did find that we had made some invalid assumptions
about XML processing performance as document size
increases.

Specific results of applying the Performance and
Scalability perspective in this project were:
• a systematic approach being adopted to achieving

performance goals;
• the system’s Architect gaining a rapid understanding

of the process to use to ensure acceptable performance
(including concerns, techniques, tactics and pitfalls);

• the creation of a performance model and supporting
performance tests;

• an early understanding of the likely performance that
could be gained and the risks that this implied;

• the identification of possible future solutions to likely
performance problems; and

• several potential problems being noted and rectified
during the process.
Having had previous experience of mentoring

architects and performing architectural design ourselves
for performance critical systems, we feel quite strongly
that applying the perspective was a great improvement

over the intuitive way of working that we had used
before, for several reasons.

Firstly, the perspective’s systematic approach and
well organised information encouraged both architects to
work through the system’s performance characteristics,
even though they suspected that all was well. In fact, as
seen above, several potential performance problems were
identified because of this, that would otherwise probably
have been overlooked.

In addition, the reference material in the perspective
allowed both architects to rapidly remind themselves of
what to focus on, what to bear in mind and how to resolve
problems if found, so helping them to be more effective.
While all of this material is also available in specialist
texts, the summary presentation in the perspective makes
it much more accessible and so more likely to be used.

Lastly, the checklists and summary material in the
perspective simply meant that the architects were less
likely to forget something important.

As mentioned above, evolution was also an important
quality requirement for this system and so the architects
also applied the Evolution perspective. We do not have
space to describe this activity in detail, but it is worth
briefly discussing how the perspective was used.

The Evolution perspective guides the architect to
consider the types and likelihood of occurrence of
evolution in their system. For this system, this resulted in
the architects identifying two likely future evolutionary
needs, firstly the need to provide network access to the
data and so host the system in an application server, and
secondly the need to support new systems and business
entities on a routine basis.

Based on this assessment, a key architectural design
decision was made, to isolate all transformation logic in
XSLT style sheets, specific to the source or destination
system, as this allowed easy addition of new entities and
systems and also allowed the style sheets to be reused in
an application server implementation if needed.
However, this decision immediately resulted in a conflict
between the need to support easy evolution and the need
to achieve certain scalability goals, as the XSLT
processing model requires all of the input data set to be
loaded into memory, so limiting scalability.

Having considered this trade-off, the architects
decided to commit to the use of XSLT, as the evolution
requirement was paramount in the short term, but to
identify and document a number of alternative options
that could be used to provide better scalability for specific
transformations in the future if required.

Again, the structured approach that the perspective
encouraged meant that the architects worked through their
evolution needs systematically and this helped them to
confidently make a trade off between two competing
qualities.

In summary, using the two perspectives during the
project’s architectural design activity helped the architects
to achieve their quality goals (performance, scalability
and evolution), while being confident that they had
considered the problems systematically and made a trade
off that they could be satisfied with.

4 Strengths and Weaknesses of the
Approach

The main strengths of architectural perspectives that
have been found in this and other projects are described
below.
• Perspectives provide a framework for organizing and

using knowledge, which is often a major challenge for
software architects, given the breadth of the role.

• Using perspectives helps to avoid the duplication of
information between views, and the inevitable
resulting maintenance and traceability problems,
which could otherwise occur if quality property based
views were created.

• The use of perspectives helps an architect to work in a
systematic way to ensure that certain key quality
properties are exhibited by their system, so helping to
organise the work and ensure that nothing is forgotten.

• Perspectives encourage architects to share and reuse
knowledge about achieving quality properties.

• We have found perspectives to be useful to both
novice and experienced architects alike, due to the
different ways that they can be used. Indeed, we wrote
the set of perspectives outlined above and routinely
use them ourselves in our own work and well as when
mentoring other architects.

• The approach works well with an architectural design
process that is using viewpoints and a quality-
property-centric evaluation approach such as ATAM.
This means that the approach fits well with the current
state of the art in software architecture practice.

• The approach is very simple, can be explained in a
few minutes and we have found that people
understand it very quickly.

• The approach does not dictate a particular style or
structure for the architecture and so can be used with
many types of system.

• Perspectives are the result of practitioner experience
and solve a real problem that we had.
Like any approach, there are also pitfalls to be aware

of when applying perspectives, the more important of
which are described below.
• Each perspective addresses a single quality property,

which means that for any complex system the
architect has to apply a number of them and there is
no guarantee that the advice in each will be
compatible. Indeed, you would expect the advice in a
number of them to conflict (between performance and

flexibility concerns in different perspectives for
example) and the architect needs to resolve these
conflicts when they arise.

• The approach does not help the architect to make the
right decisions for their particular stakeholders and
this is still a difficult, risky, but key part of the
architect’s role.

• The use of a perspective results in modifications to a
number of views, but does not explicitly record the
modifications (i.e. the design decisions) made. It is
important that the architect maintains records of the
important decisions made and their rationale,
including those decisions made as a result of applying
a perspective.

• The approach does not help the architect to select the
right set of perspectives to apply, as this is totally
dependent on the needs of their particular system and
so this is still a matter of the architect’s skill and
judgment.

• The perspectives just contain written advice (rather
than any sort of automated assistance such as that
provided by research tools like ArchE [2]) and the
process of applying a perspective is still a skilled job
that relies entirely upon the architect’s abilities.

5 Lessons Learned

The primary lessons that we have learned as a result
of our work with perspectives are summarised below.

5.1 Viewpoints and Quality Properties

We have found the viewpoint-oriented approach very
valuable for organising the software architecture process.
However, we have found the approach, as exhibited in
existing viewpoint sets, limited when considering how a
system should be designed to meet particular quality
properties. The fundamental problem we have found is
that viewpoints are typically oriented around a particular
type of architectural structure (concurrency, information,
modules) whereas achieving a quality property nearly
always requires the consideration of cross-cutting
concerns that cross a number of structural dimensions.

A number of people have disagreed with us verbally,
or in private correspondence, on this point, with the core
of the argument being that you can create any viewpoint
you like (for example a “Security” viewpoint) and so this
addresses our point.

In fact, our experience is that creating quality
property based viewpoints and views is not a particularly
effective approach, for two main reasons.

Firstly, when creating a quality-based view, you
inevitably end up duplicating a lot of information from
the fundamental structural views, so eliminating one of
the great advantages of views (the fact that their disjoint

nature means that there is little duplication between
them). Taking security as an example, a Security view
will inevitably duplicate a lot of the Deployment view, in
order to show how security technology is used to secure
the system. Such duplication makes maintenance of the
architectural description difficult and can be confusing for
stakeholders reading it, as they have to relate two similar,
but different, descriptions of parts of the system.

Secondly, one of the weaknesses of a view-based
description is that you inevitably end up fragmenting your
description into a number of related parts, which can
make it hard to get an overall understanding of the
system. Adding more views only makes this worse and
most systems are going to need a number of quality-based
views in order to discuss their important qualities.

Intuitively, we also find a separation between design
advice for structures and qualities useful in organizing
both information and the architectural design process,
particularly for novice architects.

5.2 The Value of Structure

When using perspectives, for ourselves and with
customers, we have continually been struck by how useful
people find the simple and immediately understandable
structure that both viewpoints and perspectives implicitly
impose on the architectural design process. Having the
process structured around a set of viewpoints and
perspectives seems to help people to understand the
process and organise their work within it. This structuring
is particularly valuable in the architectural design process
as it is characterised by a large number of important
factors that all need to be considered simultaneously,
making it difficult to organize effectively.

5.3 The Importance of Simplicity of Approach

An important strength that we see in both viewpoints
and perspectives is the simplicity of the approaches. The
basics of both approaches can be explained with the help
of a whiteboard in 10 or 15 minutes and we have found it
rare for people not to understand the approaches within
this time. We feel that this indicates that the approaches
are fairly intuitive and they seem to reflect an idealisation
of the way that people work (or at least think they work).
The importance of this simplicity is hard to
underestimate, as it helps both adoption of the technique
by practicing architects and the willingness of their
managers to pay for its adoption.

5.4 Sharing Architectural Knowledge is
Valuable

When software architects meet, there is usually a
discussion of the architectural challenges that the
architects are dealing with at the time and it is usually the
case that the challenges are similar. Over time, most
architects develop a set of standard solutions to problems
that they encounter and build up background knowledge
that tells them what to focus on and what to avoid in
common design situations. However, this sort of personal
knowledge base takes a long time and a lot of specific
experience to develop. In many cases, sharing
architectural knowledge can help to circumvent this
learning process and both viewpoints and perspectives
can fulfil the role of the knowledge source to help make
this a reality.

5.5 Making Architectural Tradeoffs is Difficult

One of the limitations of perspectives is that the
approach only deals with a single quality property at a
time; this is intentional and is meant to keep the approach
simple and usable. However, it does mean that the
architect still has to make the tradeoffs between the
demands of different quality properties. Given how
system specific the set of tradeoffs required normally is
and how dependent it is on the needs of a particular
collection of stakeholders, we are not particularly
optimistic that this problem will be solved by a generally
applicable approach in the near future. We view it simply
as one of the taxing but fascinating parts of the architect’s
role.

6 Related Work

Within the area of software architecture, the most
closely related work to architectural perspectives is
probably architectural tactics [1]. Perspectives embrace
and extend tactics by providing advice relating to what
the architect should know, do and be aware of, as well as
the specific solution advice provided by an architectural
tactic.

The collection of rich sets of architectural viewpoints
that are available, such as 4+1 [12], Siemens [9] and
Garland and Anthony [8] are another related area of
software architecture work. As noted earlier, perspectives
are the result of our experience in applying viewpoints
[16] and are designed to be a compatible extension to the
approach. A second closely related concept is that of a
viewtype [7], that provides guidance on documenting an
architectural structure, based on an architectural style

Architectural perspectives are also complimentary to
the work performed in the area of software architecture

evaluation, characterised by evaluation methods like
ATAM [6]. Formal evaluation methods like ATAM
allow an architecture to be evaluated for suitability with
respect to stakeholder defined goals, whereas perspectives
guide the architect through the process of achieving these
desired qualities, in order to produce a suitable candidate
architecture that can be evaluated.

Outside the immediate area of software architecture,
architectural perspectives also have some similarities to a
number of other active areas of software engineering
research. In the requirements engineering sphere, the
term “viewpoint” has been used to describe an approach
for structuring requirements [13] in a way that allows a
number of different views of a system to be described and
related to each other. At the other end of the spectrum,
aspect oriented programming technology [11] is another
way of considering cross-cutting concerns within a
system, which has some conceptual alignment with the
system-wide quality property focus of perspectives.

7 Summary and Conclusions

We have introduced an approach to capturing,
managing, using and sharing architectural knowledge for
achieving quality properties, that we term architectural
perspectives. Like architectural viewpoints, the approach
provides a standardised framework for capturing
architectural knowledge, but rather than being organised
around types of architectural structure, it is organised
around the desired quality properties of the system being
designed. We have found that the approach works well in
practice and is compatible with existing architectural
approaches including architectural evaluation and
architectural viewpoints.

Based on our experiences with the approach, we
would suggest that it can be a useful tool to encourage the
sharing of architectural knowledge between both
experienced and novice architects, although it does not
fundamentally alter the complex process of interquality
trade off that is at the core of the architectural decision
making process. However, as more perspectives are
developed, to address quality properties for different types
of systems, we feel that the approach will become widely
applicable to the problems that software architects face in
their work.

8 Acknowledgements

We would like to thank Professor Wolfgang Emmerich of
University College London for his valuable advice and
review during the preparation of a previous version of this
paper.

9 References

[1] G. Abowd, R. Allen, and D. Garlan. Formalizing Style to
Understand Descriptions of Software Architecture. ACM
Transactions on Software Engineering and Methodology,
4(4):319–364, Oct. 1995

[2] F. Bachmann, L. Bass, and M. Klein. Preliminary Design
of ArchE: A Software Architecture Design Assistant.
Technical Report CMU/SEI-2003-TR-004, Software
Engineering Institute, Carnegie Mellon University, March
2003.

[3] F. Bachmann, L. Bass, and M. Klein. Deriving
Architectural Tactics: A Step Toward Methodical
Architectural Design. Technical Report CMU/SEI-2003-
TR-021, Software Engineering Institute, Carnegie Mellon
University, March 2004.

[4] J. Bosch. Design and Use of Industrial Software
Architectures. Addison-Wesley, Boston, MA, USA, 2000.

[5] J. Clark. XSL Transformations (XSLT) Version 1.0. W3c
recommendation, http://www.w3.org/TR/xslt/, 1999.

[6] P. Clements, R. Kazman, and M. Kline. Evaluating
Software Architectures. Addison-Wesley, Upper Saddle
River, NJ, USA, 2001.

[7] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R.
Little, R. N. Nord and J. Stafford, Documenting Software
Architectures, Views and Beyond, Addison-Wesley,
Upper Saddle River, NJ, USA, 2002.

[8] J. Garland and R. Anthony, Large Scale Software
Architecture: A Practical Guide Using UML, John Wiley,
2002.

[9] C. Hofmeister, R. Nord, and D. Soni. Applied Software
Architecture. Addison-Wesley, Upper Saddle River, NJ,
USA, 1999.

[10] IEEE Standards Board. Standard 1471, Recommended
Practice for Architectural Description of Software-
Intensive Systems. IEEE Computer Society Press, 2000.

[11] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.
Lopez, J.-M. Loingtier, and J. Irwin. Aspect-Oriented
Programming. In M. Aksit and S. Matsuoka, editors,
Proc. of the European Conference on Object- Oriented
Programming (ECOOP 1997), volume 1241 of Lecture
Notes in Computer Science, pages 220–242. Springer,
1997.

[12] P. Kruchten. The 4+1 View Model of Architecture. IEEE
Software, 12(6):42–50, November 1995.

[13] B. Nuseibeh, J. Kramer, and A. Finkelstein. A Framework
for Expressing the Relationships Between Multiple Views
in Requirements Specification. IEEE Transactions on
Software Engineering, 20(10):760–773, 1994.

[14] J. Putman. Architecting with RM-ODP. Prentice-Hall
PTR, Upper Saddle River, NJ, USA, 2000.

[15] N. Rozanski and E. Woods. Software Systems
Architecture: Working With Stakeholders Using
Viewpoints and Perspectives. Addison-Wesley, Boston,
MA, USA, 2005.

[16] E. Woods. Experiences Using Viewpoints for Information
Systems Architecture: An Industrial Experience Report. In
Proceedings of the First European Workshop on Sofware
Architecture (EWSA2004), volume 3047 of Lecture Notes
in Computer Science, pages 182–193. Springer, May
2004.

