
Industrial Architectural Assessment using TARA

Eoin Woods
Artechra

Hemel Hempstead, Hertfordshire, UK
e-mail: eoin.woods@artechra.com

Abstract �— Scenario based architectural assessment is a well
established approach for assessing architectural designs.
However scenario-based methods are not always usable in an
industrial context, where they can be perceived as complicated
and expensive to use. In this paper we explore why this may be
the case and define a simpler technique called TARA which
has been designed for use in situations where scenario based
methods are unlikely to be successful. The method is
illustrated through a case study that explains how it was
applied to the assessment of two quantitative analysis systems.

Keywords- software architecture, assessment methods, case
study

I. INTRODUCTION
Scenario-based architectural assessment techniques are a

well established approach for performing structured
evaluations of architectural designs, with the aim of
validating that they meet certain objectives and analysing the
decisions that have been made in order to achieve them.
New research is published in this area regularly ([1], [2], [3],
[7], [9]) and there is evidence of some industrial adoption of
the techniques too ([13], [15]).

However, scenario based architectural assessment
techniques are not very widely used in industry, with
informal approaches or �“assessment by committee debate�”
being more common. Experience of trying to use scenario
based techniques in industry has led me to conclude that this
is for a number of reasons including a perception that these
techniques are complicated and expensive to apply, a lack of
confidence about the benefits of such assessments and the
fact that most of the methods focus on assessing an abstract
architecture rather than examining the system
implementation as part of the process.

These experiences have led me to create a simple
architectural review method called the Tiny Architectural
Review Approach (TARA) that is quick and inexpensive to
apply, is less prescriptive than most of the scenario based
methods, does not assume that all of the system stakeholders
can dedicate time to the process and uses the implementation
of the system as one of its major inputs.

This paper explains why an alternative to formal scenario
based architectural assessment methods is sometimes
needed, defines the steps of the TARA approach, and
presents a short case study that illustrates the approach by
explaining how it was used for the assessment of two
systems.

II. USING SCENARIO BASED ASSESSMENT METHODS
Most scenario-based assessment methods, such as

ATAM [2] and CPASA [9] are thorough and comprehensive
approaches that gather the stakeholders of a system and lead
them through a structured process of exploration of the
architectural decisions that have been made and their
implications. They result in a deep understanding of the
architecture (or system) under consideration and the
strengths and weaknesses that it is likely to embody. Such
methods are valuable additions to the software architect�’s
range of techniques, and can produce very valuable results
when thoughtfully applied.

However, the use of formal scenario-based assessment
methods in industry is quite rare and my experience of trying
to introduce them has led me to conclude that there are a
number of reasons for this.

Firstly there is a common perception that applying a
method like ATAM is complicated and costly, coupled with
a lack of conviction that the results of the exercise will be
useful (or at least useful enough to provide a return on
investment). Applying a method like ATAM, having just
read a book or technical report, is quite a daunting prospect
with many unanswered questions, involving a number of
probably unfamiliar concepts such as scenarios, architectural
styles and utility trees. For a complicated system, just the
difficulty in gathering the relevant stakeholders to participate
is enough to deter many people from embarking on such an
exercise.

A secondary reason that people don�’t choose methods
like ATAM is that they focus on the design of the system
and don�’t explicitly suggest using implementation artefacts
as inputs. This is a reflection of the focus of these methods
and is understandable as it allows the methods to be used
before system implementation. But many industrial
assessments are initiated because of dissatisfaction with a
system that is already implemented and in these situations
the implementation of the system is an invaluable input into
the assessment exercise.

A third reason that is specific to scenario based methods
is the need for significant time and commitment from a range
of stakeholders in order to identify, define and validate a
good set of scenarios. This can be very difficult to achieve
in an industrial context if there isn�’t a general understanding
and acceptance of the benefits of architectural assessment.

In order to address concerns like these, the Tiny
Architectural Review Approach was defined to provide a

simple approach to performing a basic architectural review
that would be structured and repeatable as well as easy to
apply with limited resources and commitment. The term
�“tiny�” is used deliberately in the name to stress that the
method is the simplest approach possible.

The aim of TARA is twofold. Firstly it aims to provide
some structure and guidance as to how to run a simple
architectural review without the involvement of all of the
system�’s stakeholders. Secondly, it aims to prove that
architectural reviews are valuable and so open the door to
discussions about the usefulness of architectural review in
general and the possibility of using more sophisticated
methods where the situation justifies them.

III. RELATED WORK
There is a large body of research literature on the subject

of the architectural evaluation of software intensive systems.
It appears that there has been research going on in the area of
architectural assessment for over 15 years, with the earliest
definition of a systematic method for analysing the
architecture of a system being the initial description of the
scenario-based SAAM method in 1994 [1].

Since then, methods defined by the SEI including ATAM
[2], QAW [3] and ARID [4] have been very influential in
this area. Arguably ATAM has become the de-facto
standard for architectural assessment where a formally
defined method is used. These methods have also spawned a
number of derivatives such as SAAMCS [5] and ESAMMI
[6] that are extensions of SAAM and HoPLAA that is an
extension of ATAM.

Other architectural evaluation methods that have
independently been proposed include Architecture Level
Modifiability Analysis (ALMA) [8], Continuous
Performance Assessment of Software Architecture (CPASA)
[9] and Architecture Level Prediction of Software
Maintenance (ALPSM) [10], these also being scenario-based
methods.

It is interesting to note that most of the architectural
evaluation and assessment methods that have been defined in
the research community are scenario based, with a consensus
obviously having been reached that scenarios should under
pin any effective evaluation technique. However, as Jan
Bosch notes in [11] there are at least four general approaches
to architectural assessment: scenario-based methods,
simulation-based approaches, methods using mathematical
models and experience based assessment.

An early approach aimed at making design reviews
effective that didn�’t use scenarios was Active Design
Reviews [17], which uses questionnaires rather than review
meetings. Much later, the SARA working group gathered
the knowledge of a number of experts and created a report
containing a high level approach to architectural review,
which does allow for the use of scenario based assessment
but suggests many other techniques that can be used in
conjunction with or instead of scenarios.

More recently, however there have been some interesting
reports of people who have explored architectural assessment
and analysis techniques that are not primarily based on
scenarios such as the Software Architecture Evaluation

Model (SAEM) [12], an approach based on the
Goal/Question/Metric framework [13], and the Independent
Software Architecture Review (ISAR) approach [18] that
attempts to improve architectural evaluation by defining a
comprehensive standard for the documentation that is
required to perform an assessment exercise.

TARA is not the only attempt to make architectural
assessment more approachable in an industrial context. The
Lightweight Architecture Alternative Analysis Method
(LAAAM) defined by Jeromy Carriere is not yet very
thoroughly defined in the literature [14] but is an effort with
similar motivations to ours, though based on a direct
tailoring of ATAM and is scenario based and uses quality
attribute trees.

Finally, Tommy Kettu and his colleagues discuss how
architectural analysis is used at ABB, to support
understanding and evolving existing systems [15]. In many
ways, the experience reported by these authors is closest to
the environment and experiences that inspired the
development of TARA.

IV. THE TARA METHOD
The Tiny Architectural Review Approach (TARA) is

based on industrial experience in situations where full blown
architectural assessment methods aren�’t suitable for some
reason, such as those situations outlined above. These
experiences led to the conclusion that a structured and
repeatable method was required, which was also quick,
flexible and simple to use, requiring a modest investment of
time and resources.

TARA differs from more formal scenario-based methods
in a couple of important ways:

• The approach isn�’t based on scenarios because
creating valid and meaningful scenarios requires a
lot of time and effort from a range of system
stakeholders. As already explained, TARA aims to
be useful in situations where little focus and time is
available from many of the important stakeholders.
We found that an assessor creating formal scenarios
themselves was a rather artificial and time
consuming activity. Instead, as we will show later,
we decided to base TARA more on expert
judgement than scenarios.

• The method assumes that the system has already
been implemented. The method can be used when a
system doesn�’t yet exist, by skipping a step, but
where an implementation is available it forms an
important input to the process.

• TARA deliberately doesn�’t mandate specific sub-
techniques (such as ATAM�’s use of quality attribute
trees). Such techniques can all be used if
appropriate, but one of the key characteristics of
TARA is its simplicity and mandating additional
techniques can be off-putting when a simple
approach is needed.

• TARA is intended for use by a single assessor or a
small group of assessors rather than assuming that a

large group of stakeholders will be prepared to
dedicate significant time to the assessment process.

The trade-off inherent in the approach is that using
TARA results in an architectural assessment that is less
thorough, insightful and reliable than one performed with a
more formal and comprehensive review technique such as
ATAM.

However the great strength of the method is that it can
often be used in situations where it wouldn�’t be possible to
use more involved scenario based techniques. TARA can
also be used as a first step in architectural evaluation for an
organisation that needs to be convinced of its benefits. Once
benefits are forthcoming from TARA�’s simple approach, this
may help significantly with the introduction of more
sophisticated techniques.

The approach is structured into seven primary steps as
shown in Figure 1 and described in the sections below.

Figure 1. The Steps in the TARA Method

1) Context Diagram and Requirements
The first step in the process is to understand the context

in which the system exists and the key functional and
quality-property requirements that the system must meet.
Occasionally this information will be readily to hand, but
usually gathering this information is part of the assessment
exercise.

The system context and key functional requirements are
usually fairly straightforward to gather from the development
team, the system�’s key users and even the sponsor who has
asked for the assessment (although the differences in the
requirements focus between those groups can be illuminating
in itself!)

Experience has shown that gathering a good set of system
quality requirements is usually significantly more difficult
and even the development team will struggle to clearly
define the qualities that their system is expected to meet.
The best approach in these circumstances is to suggest a set
of credible quality requirements based on domain and
organisational standards and norms (for example, estimating
the system�’s required availability based on working hours
and its recovery point objective based on industry norms for
data loss). The definition of this set of quality requirements
is a useful side effect of the assessment process.

2) Functional and Deployment Views
Having understood the system�’s context and

requirements, the next step is to understand its key design
elements. As has been extensively discussed [16] the
architecture of a system is made up of a number of structures
(including functional elements, information elements,
deployment environment, software design structures and so
on). For the purposes of this exercise, experience has shown
that the key architectural structures to understand for
assessment are the functional structure (runtime elements)
and deployment structure (the environment that the runtime
elements are deployed into).

Some of this information usually exists in the form of
Visio, PowerPoint, whiteboard sketches or more formal
artefacts like UML models. However, it is usually the case
that part of the assessment activity will be the creation of
fairly formal �“architectural sketches�” to provide outline
functional and deployment views of the system. (The term
�“sketch�” in this context means a well defined graphical
representation of the architectural structure, with enough
supporting text or other information to make its meaning
clear, rather than necessarily a completed model). Any
suitable notation can be used for the architectural sketches,
but we have generally used UML and found it to work well.

Having completed the process of creating the functional
and deployment views, the fundamental element structure
and mechanisms of the system should now be clear and
provide a good basis for the rest of the assessment process.

3) Code Analysis
The creation of the context diagram, identification of

requirements and the creation of the functional and
deployment views are all relatively subjective activities,
relying on expert judgment rather than simply recovering
facts. The next step in the process analyses the system code
in order to provide some more objective knowledge into the
exercise. As the old saying goes �“the code doesn�’t lie�”.

The code analysis that can be performed depends on the
languages that the system has been implemented in, the
quality of the code and the analysis tools available. For
example, a system implemented entirely in a byte-code
compiled language (like Java), which separates tests from
production code, is well structured, follows conventions and
where some powerful analysis tools are available will be
much easier to analyse than a situation where a system is
written in Perl, that has followed few conventions and where
a good analysis tool isn�’t available.

The basic types of code analysis recommended as part of
a TARA analysis are:

• Module structure and dependencies (ideally
recovered using an automated tool, so showing the
real structure of the system).

• Size measured in terms of lines of code, size of
binaries, number of files/classes/procedures or
similar, with separate measures taken for production
code and test code.

• Code characterisation metrics measured using an
automated tool that can derive measures such as the
cyclomatic complexity, XS, code duplication,
coupling, comment to code ratio, number of large
methods and similar, for each module of the system,
as well as weighted averages at higher levels.

Test coverage, measured using a coverage analyser, after
running all automated tests that are available.

These measures are all easy to derive using readily
available commercial and open source tools, are easily
explained and in my experience provide a good
characterisation of a system�’s implementation. They provide
some quantitative background to the design recovery work
and often point to areas of the system that merit further
investigation.

More advanced code analysis techniques which are well
worth considering if the time and tools to measure them are
available include static problem analysis (using commercial
tools like Jtest or open source ones like FindBugs), to
provide a general indication of how carefully the code has
been written, and test mutation analysis (using something
like Jumble or Jester) to establish whether a high code
coverage measure means anything or not.

4) Requirements Assessment
By this stage, the assessor should have a good

understanding of the capabilities of the system and how well
it has been built. The next stage is to perform an assessment
of the ability of the system to meets its functional and system
quality requirements.

Given the deliberate simplicity of the TARA method, this
step in the process is inevitably one of judgment rather than
quantifiable assessment. The ability of the system to meet its
requirements can�’t be tested during an exercise such as this
but must be assessed by expert judgment. That said, where
the system has been implemented and metrics (e.g. for
throughput or outages) are available then these should be
used as an input to the process.

The functional requirements capabilities of the system
are easier to assess than the system�’s qualities and the match
between the capabilities and the requirements can usually be
assessed using a combination of the assessor�’s domain
knowledge and canvassing the opinions of domain experts
such as key end-users of the system. A structured approach
to assessing functional requirements fit is to split each
functional requirements area into a list of fine grained
functions and then count the number of those functions that
are provided by the system. This is a point in the process
where that some use of scenarios can be valuable and they
should be considered by the assessor, even if not discussed
explicitly with the stakeholders.

Assessing the quality property requirements is more
difficult as it may well not be possible to test the system�’s
ability to meet them and the obvious sources of knowledge
about the system (such as the development team or the
system administrators) may well not have accurate
information or sound intuition about its ability to scale, be
secure, provide a certain level of throughput and so on. As
noted earlier, the relative lack of precision and certainty that
tends to characterise the quality property requirements that
the assessor needs to work with also makes this difficult.

Realistically, in a short assessment exercise, the assessor
needs to rely on expert judgement (their own and others who
they can find to assist them) in order to decide on the non-
functional abilities of the system. But this is also the step in
the process where established techniques like scenarios,
quality attribute trees, queuing models and so on can be used
as the assessor sees fit. The method deliberately does not
mandate their use, but doesn�’t discourage it either. The goal
should be to produce some form of measure as to how well
the system is likely to be able to meet its quality objectives
(such as a confidence indicator). In practice we have found
that the ATAM quality attribute tree technique is useful,
even if used informally, to refine the requirements to simple
scenarios which can be analysed further.

The result of this step should be a clear list of the
system�’s functional and quality property requirement areas,
with a clearly defined measure of the assessor�’s confidence
in the system�’s ability to meet each area (we have typically
used High/Medium/Low and 1-5).

The last three steps of the process are to �“Identify and
Report Findings�”, to �“Create Conclusions for the Sponsor�”
and to �“Deliver the Findings and Recommendations�” of the
assessment. These steps are common to all assessment
approaches so in the interests of brevity, they are just
outlined below.

5) Identify and Report Findings
Throughout the assessment activities, the assessor will

have been drawing conclusions about the qualities of the
system under consideration and these insights are valuable
outputs of the assessment activity.

The findings need to be reported tactfully, in a well-
organised report that stresses positive aspects of the system
as well as potential problems. We organise the findings into
logical concern-oriented groups, with each finding being
clearly described with a short meaningful name, an identifier,
a full description and a justification or reference to further
information to support the finding.

As the findings are being considered and written
evidence is often found to be missing or needs to be
reanalysed or appraised, leading to iteration from this step
back into the previous steps in the process.

6) Create Conclusions for the Sponsor
This step of the process adds a �“Conclusions�” section to

identify the explicit or implicit questions being asked by the
sponsor who commissioned the assessment and present other
recommendations that are required to support them. While
this may be little more than restating findings reported
elsewhere, this section allows the information to be stated in
a way that directly addresses the concerns of the sponsor.

7) Deliver the Findings and Recommendations
The final step in the process is to deliver the findings and

recommendations to all of the stakeholders affected by them
and those who have provided input to the assessment
exercise. This process often involves meetings and
presentations as well as circulation of the written report.

V. CASE STUDY OF TARA IN USE
As mentioned earlier, TARA was developed because of

the need to perform industrial architectural assessments in an
environment where an ATAM style assessment was unlikely
to be successful. This section describes two situations where
the method has been used for similar but separate system
assessment exercises.

A. System 1 Assessment
The TARA method was initially developed in response to

a request to provide an assessment of a quantitative analysis
system that had been developed in-house by a major
financial fund manager. The system had been developed
within a business unit (largely outside the purview of people
who viewed themselves as responsible for such systems) and
the question being asked was whether the system should be
adopted more widely in the organisation. The system was
new, and so somewhat unproven, but it was largely finished
and appeared to have strong user acceptance.

A senior business manager had inherited ownership of
the system due to a reorganisation and needed to know how
�“good�” the system was in order to decide whether they were
going to sponsor its ongoing development (in the face of
some opposition).

The sponsoring manager needed answers quite quickly
and the timing and organisational and political context of the
request meant that there would not have been much
enthusiasm for employing a more thorough �“high ceremony�”
method like ATAM.

At this point, the TARA method hadn�’t been defined and
the options open to the assessor were to attempt the use of a
standard scenario based assessment method or to try to
perform the assessment in an ad-hoc manner. However the
idea of a lightweight assessment approach for situations like
this emerged and it was decided to try to define the method
(which is now called TARA) and test it on the system in
question.

At this stage the method was defined very informally, by
creating a document template containing the headings for the
outputs that the review would need to produce. As the
headings formed, the need for other sections emerged (such
as the code analysis section to balance the more subjective
sections) and the first TARA review was performed by
following the activities needed to complete the document.

The result of the exercise was a completed system
assessment report, containing the sections outlined earlier in
this paper. The conclusions of the assessment were largely
positive, although there were quite a number of technical
recommendations.

No documentation really existed for this system before
the review and some examples of the documentation
produced as part of the assessment are shown below.

The diagram in Figure 2 shows the context diagram that
was captured early in the assessment exercise, showing that
the system takes inputs from a number of data sources and a
legacy system and supports a GUI client and produces
outputs that are fed to portfolio management systems.

Table I lists some of the requirements that were identified
as part of the assessment process. Again a formal and
accurate set of requirements was not available for the system,
so they were identified as part of the assessment.

When reviewing these requirements (which have not
been rewritten for this paper, only reworded to remove
organisation specific terminology), it is interesting to note
how the two functional requirements (FR1 and FR2) are
stated in rather more definite terms than the quality
requirements (NFR1 and NFR2). This is because the key
stakeholders, such as developers and end-users, were able to
clearly state the system�’s functional requirements but were
not able to clearly articulate the qualities that they required
of the system. Hence the quality requirements are the result
of the assessor�’s judgement and so are expressed in less
definite terms. This was obviously less than ideal as the
assessor�’s judgement might not have been correct, however
we have found that once non-functional requirements are
stated, glaring errors or invalid assumptions are often pointed
out by the key stakeholders, so this wasn�’t a great problem in
practice. Stakeholders seem to find it much easier to tell
people that the stated non-functional requirements are wrong
and correct them, than to write correct ones themselves!

The UML component diagram in Figure 3 shows one of
the architectural sketches created when assessing this system,
illustrating its functional structure. This diagram was
supported by basic textual descriptions of each of the
elements in the diagram along with some descriptive text.

Table II contains an illustrative sample of the quantitative
metrics which were collected as part of the code analysis
exercise for this system.

Some of the findings and recommendations from the
report are shown in Table III.

The first recommendation in the table
(�“Recommendation 1�”) is an example of a recommendation
that was largely unrelated to the specific findings of the
architectural assessment (and was included to answer a
specific question from the sponsor of the exercise), while the
second is an example of one that is directly related to a
finding (the finding �“Finding 2�” in the table).

The sponsor was pleased with the assessment report and
appeared to find it very useful and, somewhat to our surprise,
the development team readily accepted its findings and
worked with the assessor to identify specific solutions and
actions to address the recommendations. The sponsor�’s
satisfaction with the report stemmed from the fact that it
directly answered the questions he had posed (rather than
being a generic architectural assessment, of the sort he had
seem before) and it was organised in a way that clearly
described the system and supported all of its findings with
evidence (e.g. metrics) or clear reasoning (e.g. the logic
behind expert judgement). This meant that the report wasn�’t
particularly contentious, was easy to get people to read (as it
contained a lot of useful information) and led to it being

accepted positively by those who had to act on its
recommendations.

Interestingly, the main result of the exercise was a much
higher degree of organisational confidence that the strengths
and weaknesses of the system were understood. In fact,

although weaknesses had been identified, the credibility of
the development team�’s (naturally) positive opinion of their
system was strengthened because the weaknesses were now
understood too and were perceived to be rectifiable.

Figure 2. Context Diagram for System 1

Figure 3. Functional View Sketch for System 1

TABLE I. EXAMPLE REQUIREMENTS FOR SYSTEM 1

FR1 Quantitative Model Management and Execution �– the core
responsibility of the system is to allow quantitative model to be
defined and executed when required. The model defines the
input data, calculation status and output data that result in the
generation of the quantity and cost values which are the system�’s
main output.

FR2 Override Management �– in many cases, users of the system will
want to be able to override individual values or groups of values
in the source data being used by the system. The system must
provide the ability to create, remove and report on overrides and
how they have affected the quantity value calculations.

NFR1 Performance �– the key performance metric is the time taken to
perform a model calculation run and generate results. Currently
this is assessed to take in the order of 30 minutes in the system,
but the target time for this is about 10 minutes. The other
important performance requirement is the implicit requirement
for the user interface to be usably fast (defined by the
organisation to mean never freezing, responding instantaneously
to local UI events and new data being available within 10
seconds of a request).

NFR2 Scalability �– the key scalability requirement is likely to be
maintaining the bound on the quantative model execution time as
the size and sophistication of the model and the input data grow.
This is likely to be a key challenge in the future. A related
scalability requirement is the implicit requirement for the user
interface to remain usable as the amount of data in the system
and in each model run grows. Finally, the system�’s user base
will never be very large but it will probably need to support 30
or 40 users per region in the long term.

TABLE II. EXAMPLE QUANTITATIVE MEASURES FOR SYSTEM 1

Implementation
Size

~1150 Java classes and 20 database tables. The
Java code is approximately 111,300 (raw) lines of
code and is ~230,000 Java byte code instructions.

Test Size ~60 Java test classes which reference ~100 Java
classes in the implementation.

Structure Code organised into 10 modules and 8 layers, with
about 15% of the leaf level packages considered to
be �“tangled�” together.

Tangled Code Engine - package com.abc.system. engine
(46% of the code tangled);
Server - package com.abc.system (42% of the
code tangled) and package com.abc.
system.service (31% of the code tangled);
Base �– package com.abc.system (32% of the
code is tangled) and package com.abc.
system.cuboid.dimension (30% of the
code tangled).

TABLE III. EXAMPLE FINDINGS AND RECOMMENDATIONS FOR
SYSTEM 1

Finding 1 Model Implementation - The quantitative model
implementation is very nicely done and a
significant innovation when compared to previous
such systems. The fact that the model definition is
now effectively data, rather than code, means that it
can be evolved much more quickly than previous
systems allowed and also (in principle) understood
and modified by people outside the development
team. It also opens up the possibility of
implementing multiple execution engines for
different scales and type of workload.

Finding 2 Internal Dependencies - The inter-module, inter-
package and inter-class dependencies in the system
could do with some review. In particular, the
number of inter-module dependencies suggests that
many sorts of change could be difficult in the
future. Some of dependencies within the modules
also appear to be very complicated and would
benefit from a review by the development team to
ensure that this level of inter-package and inter-
class coupling is really required.

Recommendation 1 Operational Documentation - When installing and
running the system, people in other regions will
need simple, task oriented, installation and
operational documentation to guide them. This
could be as simple as a Wiki page of common
procedures.

Recommendation 2 Simplicity Supporting Variation - There is going to
be a need to support variation within the codeline
(for example providing different override logic in
one region compared to another). In order to
minimise the complexity of achieving this,
refactoring parts of the code to make the internal
dependencies as simple as possible is likely to pay
dividends later. Simplifying the dependencies will
also help people to understand the code.

B. System 2 Assessment
Some months later a similar situation arose, by

coincidence with a similar system, another quantitative
analytics system. Again, a senior manager had inherited a
system by virtue of a reorganisation and needed to
understand what he had become responsible for. In this case,
it was assumed that the system in question was going to be
used as the global strategic system for the kind of processing
that it was responsible for, but no architectural assessment
had been performed to support this decision. The manager in
question, having seen the earlier assessment�’s outputs, asked
for a similar assessment to be performed for this second
system, in order to assess its �“fitness for purpose�” in its
proposed role.

The process followed for this assessment was largely the
same as for System 1, although because System 2 was older
and its ability to evolve was in question, the focus of the
assessment placed more emphasis on assessing
maintainability than in the previous exercise.

Predictably, this assessment produced similar outputs to
the assessment of System 1, but to better illustrate the
process, we present some alternative outputs to the ones
shown in the previous section.

Figure 4 shows the context diagram for System 2 that
was created as part of the exercise.

This context diagram shows that System 2 was also a
data processing �“pipe�” taking inputs from a set of databases,
with quantitative parameters specified via other interfaces,
performing statistical processing on that data and writing the
results to the file system.

System loosely follows a �“pipe and filter�” architectural
style and so a data flow view was very relevant for capturing
some of the important relationships within the system and
was produced as part of the assessment.

Figure 4. Context Diagram for System 2

Figure 5. Module Dependencies for System 2

One of the models usually produced during a TARA
review is a code module structure analysis, to show the
system�’s code modules and the dependencies between them.
Given the age of System 2 and the concerns about
maintainability, this analysis was particularly relevant for
this system and the result of the analysis can be seen in the
dependency diagram in Figure 5. This analysis highlighted
the fact that the module structure of System 2 is complicated
with many cycles in the dependency graph and this finding
was a valuable output of the exercise.

Examples of the commentary as to how well System 2
met its requirements are shown in Table IV.

TABLE IV. REQUIREMENTS ASSESSMENTS FOR SYSTEM 2

Derived Value
Data Generation

The initial part of the process (signal data processing)
is performed by specific Java classes, containing code
to extract the signal data from one or more data
sources and to perform any initial processing required
for it to be useful. The latter part of the process
(merging and statistical processing) is performed by
the ValueCombiner (according to configuration

settings) and the Java transformation classes, running
in Transformation Queues (the definition of the
transforms to use also being part of the system
configuration). This appears to work well and
obviously provides enough flexibility for the current
strategies being supported.

Data
Visualisation
and Analysis

System 2 doesn�’t provide data visualisation and
analysis capabilities, the assumption being that
portfolio managers, researchers and other interested
parties will use other tools for these tasks. The lack
of a server in the system�’s architecture means that
there is no obvious way of remedying this without
integrating a lot of code from other systems or a lot
of development work.

Scalability The simple batch based programs that System 2 uses
mean that it probably exhibits quite good scalability
requirements, at least to moderate scalability degrees.
It is possible to split the workload up across many
batch program invocations so that a lot of work can
be done in parallel provided that the data
dependencies allow this. The fact that the system
also writes its signal data to intermediate files for the
data pipelines to use means that signal data need only
be generated once and is shared between compute
runs, again helping with scalability. Scalability
challenges are likely to emerge if very complicated
calculations are defined that need to merge many
large signals and then perform long pipelines of
transformations on the result.

A couple of examples of the findings that were reported

for the assessment of System 2 are shown in Table V.

TABLE V. EXAMPLE FINDINGS FOR SYSTEM 2

Overall Structure As reported earlier, the module structure of the
system is very complicated and looks quite
confused. This is probably the result of extensive
evolution (see earlier) but it makes the system
difficult to understand at the detailed level, and
would make large scale modification, extension or
repurposing difficult.

Standardisation The code of System 2 has obviously been
developed by a number of people in a number of
styles since it was originally created. It doesn�’t
appear to follow any particularly strong coding or
design conventions and while this obviously
doesn�’t affect how the software runs, it does make
it more difficult to understand, extend and
maintain.

This assessment was also received very positively by the

sponsor, and reasonably positively by the development team
(even though some of the findings were more critical than in
the first case and had to be expressed tactfully). The fact that
the findings were factual, fair and backed up by firm
evidence (rather than simply being opinions) all helped with
the acceptance of the results.

VI. EVALUATION OF THE APPROACH
The TARA method has now been used successfully to

assess a number of systems and it has been very successful in
use. The sample size is small (and only relates to one
organisation) but so far the method has proved to be useful.
Given its simplicity, it is worth briefly considering what has
made TARA successful and also where its weaknesses are.

Experience of using TARA suggests that the main
reasons that it has been successful are:

• Simplicity �– people are often suspicious of what they
perceive as �“high ceremony�” methods containing
many techniques with strange names that initially
look like �“common sense�”. TARA addresses this by
using a very low ceremony approach that is easy to
explain and deliberately doesn�’t try to introduce
further named techniques as part of its application.

• Structure �– the approach brings structure and
standardisation to the assessment process in a
lightweight way. Both assessors and stakeholders
find this useful as it helps to ensure a balanced
process that does not overlook important factors.

• Speed �– it cannot be overstated that the ability to
explain what you�’re going to do in 10 minutes and
do it in 2 or 3 days, write it up in another day and
deliver the results in a couple of hours overcomes
many objections to architectural assessment and
often buys enough credibility to allow the idea of
more comprehensive assessments to be discussed.

• Simple and Widely Useful Outputs �– the outputs of
TARA are all easily comprehensible, directly answer
a set of sponsor questions and contain a lot of useful
information; in some cases the TARA report is the
only architectural description information that exists
for the system being considered.

• Concise Outputs �– the report for a system tends to be
about 5000-8000 words, with 3 or 4 diagrams, so the
results are easy to read and comprehend (although
this is really the result of the report format rather
than the method itself).

Conversely, the weaknesses that the method shows in
practice are:

• Expert Subjectivity �– use of the method is very
reliant on the knowledge and judgement of the
assessor who is performing the assessment. The
method doesn�’t explicitly gather stakeholder input
and find a consensus between different stakeholder
groups (although some parts of the process may
result in this, such as the requirements fit analysis).

• No Trade-Off Analysis �– the method doesn�’t
explicitly lead the assessor through a consideration
of the system�’s design decisions and the trade-offs
inherent in them (although the consideration of
system requirements does result in some
consideration of this). An assessor can perform
trade-off analysis at any point in the process, but the
method doesn�’t require this or explain how to do it.

• Structure Based �– a related point is that while more
sophisticated methods like ATAM are really
analysing the design process, the decisions made and
their tradeoffs as much as the system itself, TARA
doesn�’t do this. The focus of TARA is on the
architectural structures of the system and it is usually
used when the system already exists, so less effort is
spent considering the decisions and tradeoffs

inherent in the design, and more effort assessing
what is there and recommending how to change it.

• Relatively Shallow �– the simple approach and low
resource investment of TARA assessment means
that the insight achieved is relatively shallow
compared to more sophisticated approaches. The
results of a TARA assessment should be treated with
some caution and parts of the assessment
reconsidered should they appear to lack evidence or
be in contradiction with other expert opinion.

Most of these strengths and weaknesses stem from the
fundamental simplicity of the method and probably can�’t be
addressed effectively while still keeping the characteristic
simplicity of TARA that is necessary in the situations where
it is to be used. Where a more sophisticated method is
needed, and the environment will allow its application, then
such methods exist already and do not need to be reinvented.

VII. SUMMARY AND CONCLUSIONS
This paper set out to do three things: (a) to explain why

scenario based assessment methods are not always used in
industry; (b) to explain a simple less sophisticated approach
which has proved useful as an initial starting point for
architectural assessment; and then (c) to illustrate the
approach by showing how it had been used on two system
assessment exercises and the results that it produced.

While scenario based assessment approaches can produce
good results, they can be quite complicated exercises to run,
requiring significant amounts of time from a large group of
people. The benefits may not be immediately apparent to
many of the participants and the sophistication of some
methods makes them daunting in some environments.

However, a frequent situation in an industrial context is
for an architect to be asked for their opinion as to the
�“quality�” of an existing system and this implies the need for
some sort of architectural assessment activity.

In order to allow us to structure architectural assessment
exercises where we could not embark on full-blown scenario
based methods, we defined the Tiny Architectural Review
Approach (TARA) which is a simple method which can be
used by a single assessor or a small group of assessors and is
not predicated on gaining the attention and large amounts of
time from the system�’s stakeholders.

We have used TARA for a number of assessment
exercises, a couple of which form the case study in this
paper, and have found it to be an effective approach within
its limitations. It has both allowed us to assess systems and
report our findings and recommendations in a structured
way. It has also helped us to gain enough confidence from
the sponsoring managers to start conversations about the role
of architectural assessment and where it may be worth
considering committing more effort to it.

The conclusion we have drawn from this experience is
that it is beneficial to have simple, less formal options for
architectural assessment to compliment the more established
approaches. Simple methods are valuable in situations where
the focus is an existing system or where the resources and
commitment for a more significant effort cannot be gathered.

VIII. REFERENCES
[1] R. Kazman, G. Abowd, L. Bass, and P. Clements, Scenario-Based

Analysis of Software Architecture, IEEE Software, pp. 47-55, Nov.
1996.

[2] R. Kazman, M. Klein, M. Barbacci, H. Lipson, T. Longstaff, and S.J.
Carriere, The Architecture Tradeoff Analysis Method, Proc. Fourth
Int'l Conf. Eng. of Complex Computer Systems (ICECCS '98), Aug.
1998.

[3] M. Barbacci et al, Quality Attribute Workshops, technical report,
CMU/SEI-2003-TR-01, Software Engineering Institute, August 2003.

[4] P.C. Clements, "Active Reviews for Intermediate Designs," Tech.
Report CMU/SEI-2000-TN-009, Carnegie Mellon University, 2000.

[5] N. Lassing, D. Rijsenbrij, and H. van Vliet, On Software Architecture
Analysis of Flexibility, Complexity of Changes: Size Isn't Everything,
Proc. Second Nordic Software Architecture Workshop (NOSA '99),
pp. 1103-1581, 1999.

[6] G. Molter, Integrating SAAM in Domain-Centric and Reuse- Based
Development Processes,o Proc. Second Nordic Workshop Software
Architecture (NOSA '99), pp. 1103-1581, 1999.

[7] F.G. Olumofin and V.B. Misic, Extending the ATAM Architecture
Evaluation to Product Line Architectures, TR 05/02, Department of
Computer Science, University of Manitoba, June 2005.

[8] P. Bengtsson et al., Architecture-Level Modifiability Analysis
(ALMA), Journal of Systems and Software, 2004. 69(1-2).

[9] R. J. Pooley, A. A. L. Abdullatif, "CPASA: Continuous Performance
Assessment of Software Architecture," Engineering of Computer-
Based Systems, IEEE International Conference on the, pp. 79-87,
2010 17th IEEE International Conference and Workshops on the
Engineering of Computer-Based Systems, 2010.

[10] P.O. Bengtsson and J. Bosch, Architecture Level Prediction of
Software Maintenance, Proc. Third European Conf. Software
Maintenance and Reeng., pp. 139-147, Mar. 1999.

[11] J. Bosch, Design and Use of Software Architectures: Adopting and
Evolving a Product-Line Approach. Addison-Wesley Professional,
Reading, May 2000.

[12] J.C. Duenas, W.L. de Oliveira, and J.A. de la Puente, A Software
Architecture Evaluation Model, Proc. Second Int'l ESPRIT ARES
Workshop, pp. 148-157, Feb. 1998.

[13] A. Zalewski, Beyond ATAM: Architecture Analysis in the
Development of Large Scale Software Systems, Lecture Notes in
Computer Science, 2007, Volume 4758, Software Architecture, Pages
92-105.

[14] S.J. Carriere, Lightweight Architecture Alternative Assessment
Method, no paper or technical report exists yet so the best reference is
http://technogility.sjcarriere.com/2009/05/11/its-pronounced-like-
lamb-not-like-lame.

[15] T. Kettu, E. Kruse, M. Larsson and G. Mustapic, Using Architecture
Analysis to Evolve Complex Industrial Systems, Lecture Notes in
Computer Science, 2008, Volume 5135, Architecting Dependable
Systems V, Pages 326-341.

[16] D. Garlan, F. Bachmann, J. Ivers, J. Stafford, L. Bass, P. Clements,
and P. Merson. Documenting Software Architectures: Views and
Beyond (2nd ed.). 2010. Addison-Wesley Professional

[17] D.L. Parnas and D.M. Weiss, Active Design Reviews: Principles and
Practices, Journal of Systems and Software, vol. 7, no. 4, 1987, pp
259-265.

[18] A. Tang, F.-C. Kuo and M.F. Lau Towards Independent Software
Architecture Review, in 2nd European Conference on Software
Architecture (ECSA 2008), 2008, pp. 306-313.

[19] H. Obbink, P. Kruchten, W. Kozaczynski, H. Postema, A. Ran, L.
Dominic, R. Kazman, R. Hilliard, W. Tracz and E. Kahane, Software
Architecture Review and Assessment (SARA) Report, Version 1.0,
2002.

