
2	 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY � 0 7 4 0 - 7 4 5 9 / 1 7 / $ 3 3 . 0 0 © 2 0 1 7 I E E E

THE PRAGMATIC
ARCHITECT

Editor: Eoin Woods
Endava
eoin.woods@endava.com

Should Architects Code?
Eoin Woods

A FEW SOFTWARE architecture ques-
tions always light up the Twittersphere
with controversy when asked:

•	 What is architecture, and is it just
design?

•	 Do you need architecture in agile
development?

•	 Should architects code?

I examined the first two questions in previ-
ous columns1,2 but have avoided answer-
ing the third. I address it now, however,
because it’s an intriguing question, which
doesn’t have an obvious answer.

When people ask, “Should archi-
tects code?” or talk about “the coding
architect,” they might be referring to
anything from an architect or designer
keeping a working knowledge of the
technology in use (and being able to
review and write code if necessary) to an
architect spending significant time writ-
ing a system’s production code.

Let’s assume that the question is simply
whether the people performing the sys-
tem’s architecture work should also devel-
op some of the system’s production code.

Personal Motivations
Often, architecture work naturally
diverts architects from spending large
amounts of time developing a system’s
production code. Architecture is a tech-
nical management activity that involves
a range of work, not just coding. So what
are some personal reasons for architects
to continue coding work?

First, to lead a technical team, archi-
tects must build and maintain technical

credibility so that other team members
respect their opinions. Displaying strong
coding skills can help build these techni-
cal credentials.

Second, architects should continue
coding to maintain and improve their
development skills—to not only achieve
personal satisfaction but also set high
yet realistic standards for others. Noth-
ing clarifies expectations about “qual-
ity” and “craftsmanship” better than a
well-written example.

Finally, many individuals became soft-
ware engineers because they like devel-
oping software. Coding can increase
motivation while keeping skills current.

What Are the Benefits?
There are potential benefits to architects
performing code development for their
systems.

First, coding work offers a useful real-
ity check about the the experience of
working as a developer on the system.
Are the technologies easy for developers
to use? Is the build-and-release pipeline
working effectively? Are there any serious
impediments to developer effectiveness?
By working as a developer, architects can
get a good perspective on such questions.

Performing implementation work also
lets architects see their architecture’s
realization. This helps them more deeply
understand their architectural decisions’
implications and spot possible problems
and those inevitable places where the
implementation strays from the plan.

Development work also helps archi-
tects stay current with their system’s
technologies. Over time, technologies

THE PRAGMATIC ARCHITECT

	 SEPTEMBER/OCTOBER 2017 | IEEE SOFTWARE � 3

get replaced or evolve. When archi-
tects stop coding regularly, they can
lose sight of these important details.

What Are the Drawbacks?
Coding while performing architecture
work poses some difficulties as well.

First, the architects’ priorities be-
come muddled—whereas their archi-
tecture work serves to make the team
more effective, their development
work reflects more personal objec-
tives. They must think about coding
time in terms of its return on invest-
ment (ROI). The first few hours a
week will likely yield a high ROI, but
how about the 20th hour? By then,
there are almost certainly other tasks
architects should be doing to make
the team more effective.

A project’s scale will affect the
ROI estimation. The larger the
team, the larger the delayed architec-
ture work’s impact. This is why I’ve
reluctantly shrunk my coding time
to almost zero on some projects—
too many other high-priority issues
required my attention.

Second, development and archi-
tecture work differ fundamentally.
Development work demands signifi-
cant periods of focused attention.
Interruptions make developers less
effective. In contrast, much architec-
ture work involves reacting to ques-
tions or concerns and identifying
and responding to risks or problems.
It’s difficult to work in both ways
at once.

Combined, these factors create the
risk that a coding architect will block
the project’s critical path. An archi-
tectural decision might not be made
quickly because the architect is rac-
ing to finish a critical module. Or,
an important feature might not be
delivered because the architect was
constantly interrupted while trying to
finish an important part of the code.

A final factor that we architects
might not want to admit is that, per-
haps, we aren’t as effective at coding
as we used to be. Both technology
and our individual skills change over
time. If we’re not 100 percent focused
on development tasks, are we truly
still as productive as we once were?

How Can Architects
Stay Involved?
By keeping their development work
off the critical path, architects can
mitigate problems caused by con-
flicting or changing priorities. To
remain closely involved in their sys-
tem’s implementation while avoiding
the problems I’ve discussed, archi-
tects can do the following:

•	 Fix bugs. Fixing defects can be
instructive and directly valuable
to the project. It provides insight
into the developer experience and
the strengths and weaknesses of
the architecture and code.

•	 Refactor. Technical debt nearly
always accumulates, so archi-
tects might tackle it in small,
safe steps. They’ll quickly
uncover any weaknesses in the
architecture, implementation
consistency, or tests.

•	 Investigate problems. Archi-
tects can get involved in debug-
ging and problem investigation.
Whether it’s a performance
problem, poor scalability, or a
subtle intermittent error, they
can offer a valuable perspective
while learning about the quali-
ties their architecture provides.

•	 Test. Architects might well find
that testing isn’t as thorough or
sophisticated as they’d like. So,
another opportunity for involve-
ment is to improve automated
tests. This will let architects
hone their coding skills while

developing a shared understand-
ing of how to test systems.

•	 Create architectural spikes.
Perhaps the most obvious task
to choose is carrying out the
proof-of-concept exercises that
support architectural decision
making. Doing so can deepen
architects’ knowledge of their
decisions’ implications.

Architects should pair with devel-
opers whenever possible on these
tasks. Not only can they share
expertise, but the architects can also
learn from those closer to the state
of the art.

It’s still important to keep an eye
on the schedule, even for tasks off
the critical path. If architects notice
they’re running out of time or are
about to be distracted by another
priority, they must quickly reassign
development tasks—no project man-
ager likes a surprise that has become
difficult to mitigate.

S o, should architects code? My
experience is that there’s gen-
erally a positive ROI when

architects do carefully selected imple-
mentation work, whether it’s testing,
refactoring, architectural spikes, or
simply some part of the system where
they’re the best person for the job.
Provided the project’s scale allows it,
doing some coding helps to root archi-
tecture work, keep architects’ tech-
nology knowledge up to date, and
sometimes save their sanity!

References
	 1.	E. Woods, “Return of the Pragmatic

Architect,” IEEE Software, vol. 31,

no. 3, 2014, pp. 10–13.

	 2.	E. Woods, “Aligning Architecture

Work with Agile Teams,” IEEE Soft-

ware, vol. 32, no. 5, 2015, pp. 24–26.

