
Harnessing	the	Power	of	Architectural	Design	Principles	
We	often	hear	people	talk	about	the	“architectural	design	principles”	(or	just	“architecture	
principles”)	of	a	system,	but	it	is	often	unclear	what	they	mean	by	this,	because	they	haven’t	defined	
what	they	mean	by	a	“principle”.			This	is	a	lost	opportunity,	as	defining	the	role	of	architectural	
design	principles	and	the	benefits	of	using	them	would	allow	us	to	capitalise	on	what	is	a	very	useful	
architectural	technique.	

In	this	column	we’ll	define	architectural	design	principles,	explore	what	a	good	principle	looks	like,	
and	when	principles	might	be	valuable	to	use	in	architectural	practice.	

Defining	Principles	
Firstly,	it’s	worth	stating	that	I’m	deliberately	not	making	a	hard	distinction	between	“design”	and	
“architecture”	because	I	don’t	think	it	adds	anything	useful	in	this	context.		For	the	purposes	of	this	
discussion,	we’re	talking	about	design	principles	and	they	can	apply	equally	well	at	more	detailed	
and	more	abstract	levels.	

The	Oxford	English	Dictionary	states	that	a	principle	is	“a	fundamental	truth	or	proposition	serving	as	
the	foundation	for	belief	or	action”	and	that	a	design	is	a	“plan	or	drawing	produced	to	show	the	look	
and	function	or	workings	of	a	building,	garment,	or	other	object	before	it	is	built	or	made”	so	we	can	
reasonably	define	a	software	design	principle	as:	

A	fundamental	truth	or	proposition	serving	as	the	foundation	for	action	with	
regards	to	deciding	on	the	workings	of	a	software	system.	

The	key	point	is	that	a	principle	is	a	clear	statement	of	intent	that	guides	our	design	work.	

Other	people	have	also	tried	to	define	design	principles,	notably	Danny	Greefhorst	and	Erik	Proper,	
who	have	probably	created	the	most	comprehensive	definition	in	their	book	“Architecture	
Principles”	[1]	when	they	stated	that	a	design	principle	is:	

A	declarative	statement	that	normatively	prescribes	a	property	of	the	design	of	
an	artefact,	which	is	necessary	to	ensure	that	the	artefact	meets	its	essential	

requirements	

While	a	little	abstract,	this	definition	clarifies	the	role	of	the	design	principle,	making	it	clear	that	it	
exists	to	ensure	that	some	aspect	of	your	architecture	meets	some	aspect	of	its	requirements.	

So	enough	of	abstract	definitions,	what	does	a	real	architecture	principle	look	like?		A	simple	
principle	based	on	a	real	example	from	the	banking	domain	is	shown	in	Table	1.	

Name:	 Prefer	Standardised	Messaging	
	

Description:	 When	deciding	on	message	formats	between	applications,	we	
prefer:	

(1) To	use	industry	standard	formats	(such	as	FpML,	FIX	
and	ISO	20022)	with	well	documented	in-house	
extensions	where	required.			

(2) Where	this	is	not	possible	we	aim	to	use	an	established	
organisational	standard	(such	as	EQMF).	

(3) Where	neither	is	possible,	a	well-defined,	published	
application-specific	format	should	be	used.	



Applicability:	 All	application	messaging	for	business	transaction	or	reference	
data	for	applications	with	disposition	“strategic”,	“maintain”	or	
“improve”.	

Rationale:	 • Third	party	formats	are	well	thought	out,	standardise	our	
workflows	with	the	industry,	make	interoperation	with	third	
party	software	and	services	easier	and	are	often	handled	via	
standard	third	party	libraries.	

• Established	group	standards	align	business	practice	and	
conventions	across	the	group,	are	familiar	to	developers,	
administrators	and	testers	already	and	often	have	established	
libraries	or	processing	patterns.	

• Where	a	local	message	format	needs	to	be	used,	it	should	be	
treated	like	a	local	standard	to	maximise	the	potential	for	
reuse	and	to	minimise	interoperability	surprises.		Publishing	
the	format	keeps	us	honest	and	forces	us	to	define	it	properly.	

• All	of	these	options	may	be	initially	more	expensive	than	an	
adhoc	point-to-point	message	format,	but	in	the	long	run	we	
know	that	adhoc	formats	are	extremely	expensive	to	maintain	
and	limit	our	agility.		Hence	we	are	prepared	to	pay	the	price	
for	favouring	standardisation.	

Table	1	-	Example	Architecture	Principle	

What	does	this	principle	tell	us?		Well	it	has	a	clear	name	that	hints	at	what	we’re	meant	do	do	in	
response	to	reading	it,	provides	a	short,	clear	description	that	expands	on	this	to	define	it	fully,	and	
it	defines	its	domain	of	applicability	(messaging	for	certain	data	types	for	applications	that	have	
been	classified	in	certain	ways	–	other	people	need	not	worry	about	this	principle).		Most	
importantly	it	also	explains	why	this	is	considered	to	be	important	so	that	we	can	use	our	judgement	
as	to	when	to	apply	the	principle.		This	is	a	useful	input	into	the	design	process	because	it	makes	a	
priority	of	the	organisation	clear,	and	explains	when	and	why	it	is	important.	

The	Benefits	of	Architecture	Principles	
I	think	architecture	principles	are	a	useful	architecture	technique	because	they	epitomise	the	
function	of	architecture,	which	is	to	clearly	define	the	necessary	constraints	on	the	design	of	a	
system,	without	trying	to	prescriptively	define	all	the	details	of	the	design.		That’s	what	a	principle	
does.		If	you	remember	back	to	a	previous	column	when	we	talked	about	architecture	being	about	
the	“gaps”	between	things	[2],	principles	help	to	make	boundaries	and	priorities	clear	without	trying	
to	micro-manage	the	way	that	everyone	does	their	work.	

Three	specific	benefits	that	a	set	of	architecture	principles	can	provide	are	as	follows:	

Firstly,	they	can	provide	a	context	for	design	decisions.	A	good	set	of	principles	can	help	to	make	
priorities	and	constraints	clear	and	so	help	people	make	consistent	and	informed	design	decisions.		
In	fact,	I	have	found	that	they	can	be	a	good	way	to	make	quite	abstract	ideas	like	business	goals	
clear	and	help	designers	make	technical	decisions	that	support	them.		We’ll	come	back	to	this	idea	in	
a	bit	more	depth	in	a	future	column.	

Next,	a	set	of	principles	can	be	useful	when	needing	to	justify	decisions,	cost	and	time.	As	designers	
we	are	often	faced	with	a	situation	where	we	know	the	right	thing	to	do	may	be	costly	or	take	more	
time	than	we’d	like,	but	it	is	difficult	to	find	clear,	succinct	explanations	of	why	it	is	the	right	thing	to	
do.		A	set	of	clear	principles	can	provide	a	basis	for	that	explanation.		For	example,	we	may	have	a	
principle	that	all	systems	must	be	suitable	for	high-availability	deployment,	which	might	justify	some	



design	decisions	to	build	capability	for	multi-node	operation	into	all	systems,	even	if	this	isn’t	the	
cheapest	option	for	the	immediate	future.	

Finally,	developing	a	set	of	principles	can	foster	collaboration,	communication	and	shared	values.	
Like	many	architecture	artefacts,	principles	need	to	be	developed	by	groups	not	by	individuals,	so	
that	they	are	validated	early	and	people	feel	collective	ownership	of	them.		Leadership	is	needed	
when	defining	and	refining	a	set	of	principles,	but	defining	them	in	a	vacuum	and	just	publishing	
them	is	unlikely	to	be	successful.		They	need	to	be	developed	by	the	team	working	together	and	this	
can	help	people	to	collaborate	and	helps	to	build	shared	values	across	the	group,	fostering	a	shared	
understanding	of	what	is	important	and	what	is	not.		

Defining	Good	Architecture	Principles	
The	practical	problem	with	principles	is	that	they’re	really	quite	hard	to	define	well.		It	is	easy	to	
come	up	with	a	long	list	of	self-evident	statements	or	to	create	long	rambling	statements	of	intent	
that	no	one	really	knows	how	to	apply	because	they’re	long	on	philosophy	and	short	on	actionable	
specifics.		It’s	difficult	to	produce	a	set	which	people	find	valuable.	

My	long-time	collaborator	Nick	Rozanski	has	run	up	against	this	problem	many	times	and	has	
identified	a	very	good	list	of	criteria	for	a	good	architecture	principle,	which	we	included	in	our	book	
[3].		These	characteristics	are	summarised	in	Table	2	

Constructive		 A	principle	is	stated	for	a	definite	purpose,	to	provide	specific	
guidance	and	it	is	a	useful	guide	for	decision	making.	

Reasoned		 The	principle	is	strongly	motivated	by	business	drivers,	goals,	and	
other	principles	and	is	rational,	logical	and	consistent.	

Well	Articulated		 	All	principles	need	to	be	clearly	written	so	that	they	are	
comprehensible	by	all	of	the	necessary	stakeholders.	

Testable		 Valuable	principles	are	long	lived	and	for	them	to	be	useful	to	
needs	to	be	possible	to	check	objectively	if	it	has	been	adhered	to	
and	if	not	where	the	exceptions	are	

Significant		 A	principle	that	is	self-evident	is	rarely	of	value.		Check	that	your	
principles	are	not	just	truisms	but	asking	whether	the	the	
opposite	statement	could	ever	be	true.		If	not,	the	principle	
probably	isn’t	very	valuable.	

Table	2	-	Characteristics	of	a	Good	Architecture	Principle	

These	characteristics	take	effort	to	achieve	but	result	in	principles	are	much	more	likely	to	be	
valuable	as	they	will	provide	significant	and	actionable	guidance.	

When	to	Violate	a	Principle	
Principles	are	there	to	guide	the	design	process	and	aid	consistency,	but	it	is	important	to	recognise	
that	architecture	principles	are	going	to	get	broken	occasionally.		Sometimes	this	is	because	people	
didn’t	realise	the	principle	existed	(perhaps	because	there	are	too	many	of	them)	or	because	they’re	
just	ignoring	them	(in	which	case	that	needs	to	be	challenged	to	find	out	why).		However,	there	can	
also	be	good	reasons	for	breaking	a	design	principle.	

The	principle	is	there	to	ensure	consistency	and	alignment	with	goals,	so	breaking	it	has	a	cost,	often	
a	long	term	one,	so	when	someone	violates	a	principle,	it	has	to	be	for	a	justifiable	reason.	What	you	
need	to	check	is	that	in	each	case,	the	benefits	of	breaking	the	principle	outweigh	the	costs	this	
implies.	



However,	when	design	principles	are	broken,	this	can	provide	valuable	information	for	the	architect.		
Firstly,	the	rationale	for	breaking	the	principle	is	valuable	design	information	which	highlights	some	
important	aspect	of	the	system.		Secondly,	if	a	principle	is	(justifiably)	broken	routinely,	then	that	is	a	
strong	signal	that	the	principle	needs	to	be	changed.		This	can	reveal	a	mismatch	between	
assumptions	and	reality.		Finally,	if	you	know	where	design	principles	are	violated	in	your	system	this	
is	valuable	information	as	the	system	evolves	and	you	need	to	deal	with	these	non-standard	aspects	
of	its	design.	

Conclusion	
While	people	often	talk	about	the	architectural	principles	of	their	system	they	are	often	hard	
pressed	to	actually	name	them	and	explain	their	rationale.		A	little	time	spent	during	a	system’s	
lifecycle,	particularly	early	in	its	development,	to	identify,	debate,	capture	and	communicate	a	
coherent	set	of	design	principles	for	a	system	can	be	very	valuable,	for	the	reasons	we’ve	discussed	
above.		It’s	not	an	easy	process,	but	the	end	result	helps	to	align	theory	and	practice	and	the	
principles	are	even	valuable	when	you	find	that	people	break	them,	as	that	in	itself	can	provide	
useful	information.	

References	

[1]		D.	Greefhorst	and	E.	Propper,	Architecture	Principles:	The	Cornerstones	of	Enterprise	
Architecture,	Springer,	2011.		

[2]		E.	Woods,	“Architecting	in	the	Gaps:	A	Metaphor	for	Architecture	Work,”	IEEE	Software,	vol.	32,	
no.	4,	pp.	33-35,	Jul-Aug	2015.		

[3]		N.	Rozanski	and	E.	Woods,	Software	Systems	Architecture,	2nd	ed.,	Addison	Wesley,	2011.		

	

	

	

	


