
12	 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY � 0 7 4 0 - 7 4 5 9 / 1 6 / $ 3 3 . 0 0 © 2 0 1 6 I E E E

THE PRAGMATIC
ARCHITECT

Editor: Eoin Woods
Endava
eoin.woods@endava.com

NEARLY 25 YEARS ago, Dewayne
Perry and Alexander Wolf’s seminal pa-
per recognized software architecture as
a distinct discipline1—albeit one that’s
changed considerably since then. Ini-
tially, software architecture focused on
the basic problems of designing static
software structures. Today, it must
deal with global, always-on, Internet-
connected systems with ever-changing
architectures. The software architect’s
role has continued to evolve as well,
perhaps to the point that anyone might
be called an architect. In this column, I
trace this evolution and consider what
it predicts about the future role of soft-
ware systems architects.

The Five Ages
of Software Systems
We can identify five ages of software
system evolution, each roughly aligning
with a decade (see Figure 1).

Through the 1980s, software systems
were largely monolithic. They tended to
run on single computers, whether large
central mainframes with terminals or
single-user PCs. Software was developed
as “programs,” and architecture was
largely a vendor concern, inherited from
the platform the developers were using.

Moving into the 1990s, distributed
systems became mainstream, batch
processing transitioned to online pro-

cessing, and the three-tier client-server
architecture became standard for enter-
prise systems. This entailed more archi-
tectural decisions than before, but archi-
tectural style was still dictated largely by
the vendors who supplied the develop-
ment tools and system software.

With the Internet established as
a mainstream technology in the late
1990s, organizations needed Internet-
connected systems that were “always
on” rather than just “online.” These
systems initially began as websites but
gradually incorporated public UIs for
business-to-consumer and business-
to-business processing. Thus, architec-
ture now had to support unpredictable
and challenging nonfunctional qualities
(particularly performance, scalability,
and security). Vendors’ main concern be-
came supplying products, such as large-
scale servers and network load balancers
for scalability or firewalls for security, to
meet these challenges.

Now in the 2010s, the Internet is a
basic service. This has caused our sys-
tems to evolve again—from being “al-
ways on” to being “used from anywhere
for anything”—they’re Internet-native
systems in which the Internet is the sys-
tem. These systems combine open source
components, remote Internet-connected
services, and custom code; in turn, their
services become part of the Internet via

Software Architecture
in a Changing World
Eoin Woods

THE PRAGMATIC ARCHITECT

	 NOVEMBER/DECEMBER 2016 | IEEE SOFTWARE � 13

publicly accessible APIs. These sys-
tems need public APIs (rather than
just public UIs), provide mobile UIs
as their main UI, and use flexible ar-
chitectural styles (notably microser-
vices) to assemble systems from
network-accessible services. With
cloud computing’s emergence, ven-
dors are concerned with supplying
complete cloud-based application
platforms, with many Internet sys-
tems being deployed to platforms as
a service (PaaS) environments rather
than traditional IT infrastructure.

On the basis of current trends,
the next phase of evolution ap-
pears to be intelligent connected
systems. AI—particularly machine
learning—is becoming mainstream,2
and fast, reliable networks are be-
coming ubiquitous, letting us con-
nect “things” to our systems, as well
as to traditional computers.3 These
systems will move beyond provid-
ing users with access anywhere to
providing intelligent assistance. This
will require a new architectural fo-
cus on data and algorithms as well
as a move to “emergent” architec-
ture that forms only at runtime. In
this fifth era, “intelligence” will be
a primary vendor concern because
mainstream systems will use plat-
forms that extend basic PaaS and
Internet of Things (IoT) platforms
with advanced services such as pack-
aged machine-learning capabilities.

The Five Stages
of Software Architecture
Software architecture’s evolution
has paralleled that of the software
industry, with architects’ techniques
and concerns changing in response
to each stage’s software engineering
challenges (see Figure 2).

During the monolithic systems de-
velopment stage, software architec-
ture wasn’t a recognized discipline.

Monolithic
(1980s)

Distributed
monoliths
(1990s)

Internet-
connected

(2000s)

Internet is
the system

(2010s)

Intelligent
connected

(2020s)

FIGURE 1. The evolution of software systems. Each age roughly aligns with a decade,

beginning with the monolithic systems of the 1980s and moving toward intelligent

connected systems.

Monolithic

Distributed

Internet-connected

Internet native

Intelligent connected ...?

Modules, information
hiding, layering

+

+

+

+

Views, models, stakeholders,
styles and patterns, assessment

Quality attributes,
agility, decisions

Evolution, sustainability,
principles

FIGURE 2. The evolution of software architecture. Architects’ techniques and

concerns continue to change in response to each stage’s software-engineering

challenges.

THE PRAGMATIC ARCHITECT

14	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

However, pioneers were already
thinking about large-scale software
design. This led to structural design
techniques such as using modules to
structure large code bases and using
information hiding to encapsulate
state and isolate change.4

As technology moved to dis-
tributed systems, the increasingly
complex systems and their environ-
ments led to complex design deci-
sion making that involved long-term
tradeoffs. This resulted in software
architecture’s recognition as a disci-
pline and the introduction of tech-
niques to deal with this more com-
plex environment, such as

•	 viewpoints and views for archi-
tectural description,5

•	 new modeling techniques for
architectural design,

•	 explicit identification and man-
agement of stakeholders,

•	 definition of proven and reusable
architectural styles and pat-
terns,6 and

•	 architectural assessment tech-
niques7 for structured compari-
son of architectural options.

With Internet-connected systems
came an architectural focus on

•	 these systems’ challenging non-

functional qualities (or “quality
properties”) and how to achieve
them;8

•	 the importance of well-made,
clearly communicated architec-
tural decisions;9 and

•	 how architectural design could
support the agility needed
to make quick changes10 in
response to the fast-moving,
Internet-driven market.

Today’s Internet-native systems
are generally more malleable and
dynamic, being composed from fine-
grained network services (microser-
vices). Systems are often built on
PaaS platforms and so can include a
mix of platform services, other sup-
pliers’ network-connected services,
and the system’s own unique ser-
vices. Thus, software architects are
concerned with enabling the system’s
rapid and reliable evolution. They
also must ensure that the architec-
ture is sustainable (and won’t ossify
under a mountain of technical debt)
and is defined more as a set of pat-
terns and principles11 than as a static
structure that remains stable for a
long period.

As we look toward a future in
which intelligent connected systems
will be norm, how will software ar-
chitecture’s role change again?

Software Architecture’s Future
Figure 3 lists trends likely to contrib-
ute to changes in the architect’s role
as we move into the era of intelligent
connected systems. Let’s explore
each in a little more detail.

Although structural design isn’t
going away, the need to integrate
dynamic architecture and intel-
ligence into systems will make us
reconsider the importance of data
and algorithms. These topics don’t
appear prominently in the soft-
ware architecture literature (for ex-
ample, the original 4+1 viewpoint
set had no data or information
view12). However, when a system
needs to be dynamic and intelli-
gent, data and algorithms become
important system-wide architec-
tural concerns.

Another trend is structures mov-
ing away from being defined up
front through architectural design
to being defined at runtime by com-
bining many network services to
form a system. This is quite differ-
ent from the “emergent architec-
ture” that some agile practitioners
discuss—they’re referring to the
conventional, static architecture
that develops incrementally as a
project progresses and more infor-
mation becomes available. Instead,
this trend focuses on architectural
structure that’s apparent only at
runtime because of the services’ dy-
namic composition.

Another recent development is
architects acting less as up-front
structure designers and more as
overseers of a stream of informed,
significant decisions made just in
time for the project.13 Even this
practice will likely be affected by
the challenges of intelligent con-
nected systems. Although struc-
tural decisions will remain impor-
tant, these dynamic systems will

IncreasingDecreasing

Structural design

Decisions

Data and algorithm design

Principles, policies, and algorithms

De�ned structure Emergent runtime structure

Certainty Probability

Operational process Operational policy and automation

Capex Opex

FIGURE 3. Software architecture trends as we move into the era of intelligent connected

systems. Capex: capital-expenditure biased; Opex: operational-expenditure biased.

THE PRAGMATIC ARCHITECT

	 NOVEMBER/DECEMBER 2016 | IEEE SOFTWARE � 15

demand greater focus on principles
that guide their structure and evo-
lution, policies that control their
runtime behavior (for example, Mi-
crosoft Azure’s autoscaling guid-
ance; https://azure.microsoft.com
/en-us/documentation/articles/best
-practices-auto-scaling), and, in
some cases, algorithms that govern
their dynamic evolution.

Combined, these factors mean
that software architects will more
often deal with probability than
certainty (or an assumption of cer-
tainty). Factors such as composing
systems from third-party services,
using machine learning and ana-
lytics in system design, integrating
many small (IoT) devices, and using
dynamic runtime environments such
as PaaS platforms imply that archi-
tecture will involve statistical charac-
teristics and trends more than static
structures and definite quantities.

Our systems’ operational aspects
will also evolve, affecting architec-
ture practice. Today, architects might
well be involved in defining and ad-
vising on operational processes. To-
morrow, large dynamic systems will
require policy-driven automation
rather than carefully designed step-
by-step processes, whether auto-
mated or manual.

Finally, architecture is very much
the “art of the possible”—so finan-
cial constraints can limit or enable
architectural decisions. As we move
toward cloud-hosted systems, usage-
based pricing for platforms and ser-
vices and policy-driven (rather than
statically defined) systems will push
our financial models and budgets
from capital-expenditure biased
(Capex) to operational-expenditure
biased (Opex). This implies that ar-
chitects might be having many more
conversations with accountants than
they’re used to.

A s software systems have
evolved, so has software
architecture, with practices

growing to meet each era’s new chal-
lenges. Architecture is now an implicit
part of mainstream practice. It’s often
seen as an activity rather than a dis-
tinct role, focusing more on decisions
and principles than on definitions.

Software evolution’s next phase
looks even more radical. Intelli-
gent dynamic composition, cloud
platform deployment, and the con-
nection of “things” to mainstream
systems guarantee an exciting and
absorbing ride!

References
1.	D.E. Perry and A.L. Wolf, “Foun-

dations for the Study of Software

Architecture,” ACM SIGSOFT

Software Eng. Notes, vol. 17, no. 4,

1992, pp. 40–52.

2.	“Amazon Machine Learning,” Ama-

zon Web Services, 2016; https://aws

.amazon.com/machine-learning.

3.	G. Kortuem et al., “Smart Objects

as Building Blocks for the Internet of

Things,” IEEE Internet Computing,

vol. 14, no. 1, 2010, pp. 44–51.

4.	D.L. Parnas, “On the Criteria to Be

Used in Decomposing Systems into

Modules,” Comm. ACM, vol. 15, no.

12, 1972, pp. 1053–1058.

5.	“Systems and Software Engineering—

Architecture Description,” Int’l Org.

for Standardization, Int’l Electrotech-

nical Commission, and IEEE, 2011;

www.iso-architecture.org/ieee-1471.

6.	D. Garlan and M. Shaw, An Intro-

duction to Software Architecture,

School of Computer Science, Carn-

egie Mellon Univ., 1994.

7.	P. Clements, R. Kazman, and M.

Klein, Evaluating Software Archi-

tectures: Methods and Case Studies,

Addison-Wesley, 2002.

8.	E. Woods and N. Rozanski, “Using

Architectural Perspectives,” Proc. 5th

Working IEEE/IFIP Conf. Software

Architecture (WICSA 05), 2005, pp.

25–35; doi:10.1109/WICSA.2005.74.

9.	J. Tyree and A. Akerman, “Architec-

ture Decisions: Demystifying Archi-

tecture,” IEEE Software, vol. 22, no.

2, 2005, pp. 19–27.

10.	P. Abrahamsson, M. Babar, and P.

Kruchten, “Agility and Architecture:

Can They Coexist?,” IEEE Software,

vol. 27, no. 2, 2010, pp. 16–22.

11.	E. Woods, “Harnessing the Power

of Architectural Design Principles,”

IEEE Software, vol. 33, no. 4, 2016,

pp. 15–17.

12.	P. Kruchten, “The 4+1 View Model

of Architecture,” IEEE Software, vol.

12, no. 6, 1995, pp. 42–50.

13.	E.R. Poort, “Driving Agile Architect-

ing with Cost and Risk,” IEEE Soft-

ware, vol. 31, no. 5, 2014, pp. 20–23.

EOIN WOODS is the chief technology officer at

Endava. Contact him at eoin.woods@endava.com.

www.computer.org/itpro

Technology Solutions for the Enterprise

