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NEARLY 25 YEARS ago, Dewayne 
Perry and Alexander Wolf’s seminal pa-
per recognized software architecture as 
a distinct discipline1—albeit one that’s 
changed considerably since then. Ini-
tially, software architecture focused on 
the basic problems of designing static 
software structures. Today, it must 
deal with global, always-on, Internet-
connected systems with ever-changing 
architectures. The software architect’s 
role has continued to evolve as well, 
perhaps to the point that anyone might 
be called an architect. In this column, I 
trace this evolution and consider what 
it predicts about the future role of soft-
ware systems architects.

The Five Ages  
of Software Systems
We can identify five ages of software 
system evolution, each roughly aligning 
with a decade (see Figure 1).

Through the 1980s, software systems 
were largely monolithic. They tended to 
run on single computers, whether large 
central mainframes with terminals or 
single-user PCs. Software was developed 
as “programs,” and architecture was 
largely a vendor concern, inherited from 
the platform the developers were using.

Moving into the 1990s, distributed 
systems became mainstream, batch 
processing transitioned to online pro-

cessing, and the three-tier client-server 
architecture became standard for enter-
prise systems. This entailed more archi-
tectural decisions than before, but archi-
tectural style was still dictated largely by 
the vendors who supplied the develop-
ment tools and system software.

With the Internet established as 
a mainstream technology in the late 
1990s, organizations needed Internet-
connected systems that were “always 
on” rather than just “online.” These 
systems initially began as websites but 
gradually incorporated public UIs for 
business-to-consumer and business-
to-business processing. Thus, architec-
ture now had to support unpredictable 
and challenging nonfunctional qualities 
(particularly performance, scalability, 
and security). Vendors’ main concern be-
came supplying products, such as large-
scale servers and network load balancers 
for scalability or firewalls for security, to 
meet these challenges.

Now in the 2010s, the Internet is a 
basic service. This has caused our sys-
tems to evolve again—from being “al-
ways on” to being “used from anywhere 
for anything”—they’re Internet-native 
systems in which the Internet is the sys-
tem. These systems combine open source 
components, remote Internet-connected 
services, and custom code; in turn, their 
services become part of the Internet via 
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publicly accessible APIs. These sys-
tems need public APIs (rather than 
just public UIs), provide mobile UIs 
as their main UI, and use flexible ar-
chitectural styles (notably microser-
vices) to assemble systems from 
network-accessible services. With 
cloud computing’s emergence, ven-
dors are concerned with supplying 
complete cloud-based application 
platforms, with many Internet sys-
tems being deployed to platforms as 
a service (PaaS) environments rather 
than traditional IT infrastructure.

On the basis of current trends, 
the next phase of evolution ap-
pears to be intelligent connected 
systems. AI—particularly machine 
learning—is becoming mainstream,2 
and fast, reliable networks are be-
coming ubiquitous, letting us con-
nect “things” to our systems, as well 
as to traditional computers.3 These 
systems will move beyond provid-
ing users with access anywhere to 
providing intelligent assistance. This 
will require a new architectural fo-
cus on data and algorithms as well 
as a move to “emergent” architec-
ture that forms only at runtime. In 
this fifth era, “intelligence” will be 
a primary vendor concern because 
mainstream systems will use plat-
forms that extend basic PaaS and 
Internet of Things (IoT) platforms 
with advanced services such as pack-
aged machine-learning capabilities.

The Five Stages  
of Software Architecture
Software architecture’s evolution 
has paralleled that of the software 
industry, with architects’ techniques 
and concerns changing in response 
to each stage’s software engineering 
challenges (see Figure 2).

During the monolithic systems de-
velopment stage, software architec-
ture wasn’t a recognized discipline. 
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FIGURE 1. The evolution of software systems. Each age roughly aligns with a decade, 

beginning with the monolithic systems of the 1980s and moving toward intelligent 

connected systems.
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FIGURE 2. The evolution of software architecture. Architects’ techniques and 

concerns continue to change in response to each stage’s software-engineering 

challenges.
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However, pioneers were already 
thinking about large-scale software 
design. This led to structural design 
techniques such as using modules to 
structure large code bases and using 
information hiding to encapsulate 
state and isolate change.4

As technology moved to dis-
tributed systems, the increasingly 
complex systems and their environ-
ments led to complex design deci-
sion making that involved long-term 
tradeoffs. This resulted in software 
architecture’s recognition as a disci-
pline and the introduction of tech-
niques to deal with this more com-
plex environment, such as

•	 viewpoints and views for archi-
tectural description,5

•	 new modeling techniques for 
architectural design,

•	 explicit identification and man-
agement of stakeholders,

•	 definition of proven and reusable 
architectural styles and pat-
terns,6 and

•	 architectural assessment tech-
niques7 for structured compari-
son of architectural options.

With Internet-connected systems 
came an architectural focus on

•	 these systems’ challenging non-

functional qualities (or “quality 
properties”) and how to achieve 
them;8

•	 the importance of well-made, 
clearly communicated architec-
tural decisions;9 and

•	 how architectural design could 
support the agility needed 
to make quick changes10 in 
response to the fast-moving, 
Internet-driven market.

Today’s Internet-native systems 
are generally more malleable and 
dynamic, being composed from fine-
grained network services (microser-
vices). Systems are often built on 
PaaS platforms and so can include a 
mix of platform services, other sup-
pliers’ network-connected services, 
and the system’s own unique ser-
vices. Thus, software architects are 
concerned with enabling the system’s 
rapid and reliable evolution. They 
also must ensure that the architec-
ture is sustainable (and won’t ossify 
under a mountain of technical debt) 
and is defined more as a set of pat-
terns and principles11 than as a static 
structure that remains stable for a 
long period.

As we look toward a future in 
which intelligent connected systems 
will be norm, how will software ar-
chitecture’s role change again?

Software Architecture’s Future
Figure 3 lists trends likely to contrib-
ute to changes in the architect’s role 
as we move into the era of intelligent 
connected systems. Let’s explore 
each in a little more detail.

Although structural design isn’t 
going away, the need to integrate 
dynamic architecture and intel-
ligence into systems will make us 
reconsider the importance of data 
and algorithms. These topics don’t 
appear prominently in the soft-
ware architecture literature (for ex-
ample, the original 4+1 viewpoint 
set had no data or information 
view12). However, when a system 
needs to be dynamic and intelli-
gent, data and algorithms become 
important system-wide architec-
tural concerns.

Another trend is structures mov-
ing away from being defined up 
front through architectural design 
to being defined at runtime by com-
bining many network services to 
form a system. This is quite differ-
ent from the “emergent architec-
ture” that some agile practitioners 
discuss—they’re referring to the 
conventional, static architecture 
that develops incrementally as a 
project progresses and more infor-
mation becomes available. Instead, 
this trend focuses on architectural 
structure that’s apparent only at 
runtime because of the services’ dy-
namic composition.

Another recent development is 
architects acting less as up-front 
structure designers and more as 
overseers of a stream of informed, 
significant decisions made just in 
time for the project.13 Even this 
practice will likely be affected by 
the challenges of intelligent con-
nected systems. Although struc-
tural decisions will remain impor-
tant, these dynamic systems will 
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FIGURE 3. Software architecture trends as we move into the era of intelligent connected 

systems. Capex: capital-expenditure biased; Opex: operational-expenditure biased.
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demand greater focus on principles 
that guide their structure and evo-
lution, policies that control their 
runtime behavior (for example, Mi-
crosoft Azure’s autoscaling guid-
ance; https://azure.microsoft.com 
/en-us/documentation/articles/best 
-practices-auto-scaling), and, in 
some cases, algorithms that govern 
their dynamic evolution.

Combined, these factors mean 
that software architects will more 
often deal with probability than 
certainty (or an assumption of cer-
tainty). Factors such as composing 
systems from third-party services, 
using machine learning and ana-
lytics in system design, integrating 
many small (IoT) devices, and using 
dynamic runtime environments such 
as PaaS platforms imply that archi-
tecture will involve statistical charac-
teristics and trends more than static 
structures and definite quantities.

Our systems’ operational aspects 
will also evolve, affecting architec-
ture practice. Today, architects might 
well be involved in defining and ad-
vising on operational processes. To-
morrow, large dynamic systems will 
require policy-driven automation 
rather than carefully designed step-
by-step processes, whether auto-
mated or manual.

Finally, architecture is very much 
the “art of the possible”—so finan-
cial constraints can limit or enable 
architectural decisions. As we move 
toward cloud-hosted systems, usage-
based pricing for platforms and ser-
vices and policy-driven (rather than 
statically defined) systems will push 
our financial models and budgets 
from capital-expenditure biased 
(Capex) to operational-expenditure 
biased (Opex). This implies that ar-
chitects might be having many more 
conversations with accountants than 
they’re used to.

A s software systems have 
evolved, so has software 
architecture, with practices 

growing to meet each era’s new chal-
lenges. Architecture is now an implicit 
part of mainstream practice. It’s often 
seen as an activity rather than a dis-
tinct role, focusing more on decisions 
and principles than on definitions.

Software evolution’s next phase 
looks even more radical. Intelli-
gent dynamic composition, cloud 
platform deployment, and the con-
nection of “things” to mainstream 
systems guarantee an exciting and 
absorbing ride!
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