
Operational	–	the	forgotten	architectural	view	
Eoin	Woods	

Most	books	on	software	architecture	focus	on	building	new	systems.		However	successful	
systems	spend	much	more	time	running	in	their	production	environment	than	being	initially	
developed.		This	is	why	the	recent	emergence	of	the	“DevOps”	movement	[1]	is	so	
heartening,	with	its	emphasis	on	getting	development	and	operational	staff	working	
together	as	early	as	possible	and	sharing	tools,	processes	and	practices	to	smooth	the	path	
to	production.	

Embracing	DevOps	involves	embracing	lots	of	new	technologies	and	ideas	and	can	cause	a	
lot	of	confusion	for	many	people	involved.		Architectural	thinking	and	design	can	help	to	
clarify	the	stakeholders	involved,	their	concerns	and	how	those	concerns	are	being	met.	

There	is	a	recent	book	on	DevOps	technology	and	practice	aimed	at	software	architects	[2],	
but	beyond	that,	there	isn’t	too	much	to	guide	architects	in	dealing	with	the	operational	
environment	for	their	systems.		In	this	column	I’ll	outline	an	architectural	viewpoint	that	
tries	to	do	just	that.		It’s	an	update	and	reworking	of	the	viewpoint	of	the	same	name	from	
[3].	

What	Is	“Production”?	
Before	we	go	any	further,	it	is	worth	briefly	defining	what	we	mean	by	“production”	as	it’s	a	
widely	used	term	whose	meaning	can	vary.		In	this	context	we	mean	any	environment	which	
is	being	used	to	perform	valuable	work.		This	also	usually	implies	that	the	environment	is	a	
“controlled”	environment	in	that	it	can	only	be	changed	in	accordance	with	some	sort	of	
change	control	policy,	rather	than	directly	by	developers.		Will	anyone	care	if	you	remove	
the	contents	of	the	database	by	mistake?		If	this	is	a	disaster	then	you’ve	probably	got	a	
production	environment!	

Characteristics	of	production	environments	that	make	them	difficult	to	work	in	include:	

• A	wide	range	of	stakeholders	who	have	an	interest	in	its	operation,	including	
business	management,	auditors	and	risk	managers,	infrastructure	and	operational	
staff,	as	well	as	the	normal	users	and	development	staff	who	are	also	interested	in	
the	development	environment.	

• A	high	degree	of	control,	which	is	intended	to	contribute	to	the	reliability	of	the	
environment,	but	which	means	that	there	are	usually	significant	processes	
associated	with	making	a	change.	

• A	high	degree	of	visibility,	particularly	when	things	go	wrong.		Few	people	are	really	
interested	in	the	status	of	your	development	environment,	but	when	production	
environments	malfunction	you	quickly	find	out	just	how	wide	your	stakeholder	
community	really	is!	

• Vulnerable	to	external	events,	particularly	when	connected	to	the	Internet.		Your	
development	and	test	environments	are	probably	hidden	away,	your	production	
environment	is	there	for	anyone	to	see.	

• Unpredictable	due	to	being	part	of	a	much	more	complex	environment	than	most	
development	and	test	systems,	leading	to	it	being	affected	by	external	events	that	
you	may	be	unaware	could	even	happen.	



All	of	these	factors	combine	to	mean	that	working	in	the	production	environment	can	be	
quite	challenging	and	as	software	architects	we	need	to	address	these	challenges	as	part	of	
our	work.	

	

Sidebar:	Recapping	Viewpoints	and	Views	

I	think	the	idea	of	an	architectural	view	and	its	corresponding	viewpoint	are	widely	
understood	today,	but	it	is	worth	briefly	recapping	what	they	are.		A	view	describes	one	or	
more	structural	aspects	of	an	architecture,	in	order	to	show	how	the	architecture	addresses	
one	or	more	concerns	for	one	or	more	stakeholders.		A	viewpoint	is	a	guide	to	creating	a	
particular	type	of	view.	It	defines	the	stakeholders	whose	concerns	are	reflected	in	the	
viewpoint	and	the	guidelines,	principles,	and	template	models	for	constructing	views	of	this	
type.		So	our	Operational	viewpoint	is	a	guide	to	creating	Operational	views.	

	

The	Operational	Viewpoint	
An	Operational	view	describes	how	a	system	will	be	installed,	operated	and	supported	in	its	
production	environment.		The	deployment	environment	that	the	system	needs	(servers,	
software,	networks	and	so	on)	is	addressed	by	the	Deployment	view	[4].		The	Operational	
view	is	usually	applicable	to	any	system	being	deployed	into	a	complex	or	critical	
operational	environment.	

Key	Stakeholders	
When	considering	the	operation	of	a	system,	we	often	just	think	about	systems	
administrators	but	there	are	a	wide	range	of	people	who	have	an	interest.	

• Operations	Staff,	who	accept	new	and	changed	software	into	production,	operate	
the	system	in	production	and	are	responsible	for	its	service	levels;	

• Infrastructure	Engineers,	who	are	responsible	for	providing	the	infrastructure	
services	the	system	relies	upon.	

• Developers,	who	are	responsible	for	the	software,	its	smooth	transition	to	
production,	and	ultimately	accountable	for	its	success.	

• Testers,	who	need	to	be	able	to	verify	that	the	software	will	operate	correctly	in	
production	and	that	the	production	environment	as	a	whole	will	operate	correctly.	

• Communicators,	who	in	the	context	of	developing	a	product	for	installation	on	client	
premises,	need	to	explain	the	operation	of	the	system	to	clients.	

• Assessors,	who	need	to	be	satisfied	that	the	risks	of	operating	the	system	in	
production	are	acceptable	and	managed.	

The	needs	of	all	of	these	stakeholder	groups	need	to	be	addressed,	not	just	Developers	and	
Operations.	

Concerns	
The	key	concerns	that	these	stakeholders	tend	to	have	about	the	operational	environment	
include:	

• Installation	and	Upgrade	–	how	are	software	changes	going	to	get	to	get	to	the	
production	environment	reliably?		How	will	you	know	that	they	have	been	applied	
successfully?		How	will	failures	be	rolled	back?	



• Migration	–	a	related	concern	is	that	of	migrating	workload	to	the	new	software	and	
performing	any	changes	needed	to	the	system’s	data	(both	the	storage	schemas	and	
the	data	itself).		Will	multiple	versions	of	the	system	exist	in	parallel	or	does	
everything	migrate	at	once?			

• Operational	Monitoring–	once	the	system	is	running	in	the	production	environment	
how	do	you	know	if	it	is	operating	correctly?		How	do	you	control	the	system’s	
operation?		What	“vital	signs”	need	to	be	monitored?		Some	are	likely	to	be	very	
standard	(such	as	CPU	usage)	while	others	will	be	very	specific	to	your	environment	
(such	as	message	volume	received	on	a	particular	interface).		Business	
measurements	(such	as	average	and	total	transaction	value	per	hour)	are	likely	to	be	
just	as	important	as	technical	metrics.	

• Operational	Control	-	what	tools	do	you	need	to	control	the	system?		Can	you	do	all	
this	with	third	party	tools	or	do	you	need	some	of	your	own?	

• Alerting	–	if	the	montoring	mechanisms	identify	an	unexpected	condition	what	
should	happen	next?		How	does	this	event	get	recorded	and	propagated?		To	whom?		
And	what	do	they	do?		How	will	you	use	the	history	of	monitors	and	alerts	to	provide	
continual	improvement	to	key	metrics?	

• Configuration	Management	–	most	modern	systems	are	dozens	or	hundreds	of	
infrastructure	elements,	some	of	the	largest	comprise	millions,	and	it	is	becoming	
common	to	add	and	remove	virtualised	infrastructure	elements	on	demand.		How	
will	you	manage	the	configuration	of	these	elements?		Modern	tools	like	Puppet	[5]	
and	SaltStack	[6]	can	help	to	simplify	the	process	but	are	only	part	of	the	solution	
and	may	have	an	impact	in	how	you	design	and	deploy	the	application.	

• Performance	Monitoring	–	well	documented	evidence	[7]	suggests	that	as	Internet	
applications	slow	down,	users	leave.		In-house	users	are	more	tolerant	but	
performance	is	still	often	one	of	the	biggest	factors	in	their	satisfaction	with	a	
system.		How	will	the	application’s	performance	be	monitored?		What	are	the	
important	metrics	to	measure?		How	will	degradation	be	spotted?	

• Support	–	things	inevitably	go	wrong	in	production	environments,	usually	in	highly	
unexpected	ways!		Who	will	handle	the	incidents	that	occur?		What	tools	and	
processes	will	they	need?		How	can	the	application	be	designed	to	be	easy	to	
support?	

• Data	Availability	–	backup	and	restore	is	an	obvious	concern	that	is	as	old	as	
computing,	but	one	that	needs	more	thought	that	it	is	often	given.		With	today’s	
huge	databases,	backup	and	restore	can	become	mammoth	operations	unless	very	
smart	strategies	can	be	used	for	them.	



	
Figure	1	-	Operational	Concerns	

Models	
The	essence	of	architectural	work	is	understanding	and	solving	problems,	which	often	
involves	creating	models	to	understand	systems	and	support	good	decision	making.	I	don’t	
have	space	here	to	describe	in	detail	the	types	of	models	for	addressing	operational	
concerns.		However,	in	outline,	some	of	the	models	that	I	have	found	useful	have	been:	

• Release	Models,	which	describe	the	“path	to	production”	from	the	development	
environment	(in	terms	of	stages,	technologies	and	approval	checks).		In	effect	a	
model	of	the	route	from	the	end	of	your	continuous—integration	pipeline,	to	the	
production	environment.		This	allows	you	to	communicate	it	clearly,	identify	risks	
and	weaknesses,		

• Configuration	Management	Models,	which	help	you	to	capture	and	analyse	the	
different	types	of	configuration	that	you	need	across	your	operational	environment	
and	how	it	will	be	managed	and	controlled.		Today	we	can	easily	end	up	with	
configuration	in	properties	files	for	Java	software,	application	settings	found	in	
databases,	Zookeeper	for	distributed	systems	and	Puppet	for	infrastructure,	so	
understanding,	coordinating	and	validating	change	across	all	of	this	is	a	major	
challenge,	which	some	focused	models	can	help	to	meet.	

• Administration	Models	that	show	how	the	administrative	environment	relates	to	the	
system	and	how	it	works.		Administrative	environments	are	often	a	complex	mix	of	
standard	tools,	local	utilities,	people	and	processes	and	to	avoid	lots	of	problems	and	
misunderstandings,	a	model	of	how	you	believe	it’s	all	going	to	work	will	be	of	great	
value	when	working	out	how	the	Operations	group	run	the	system.	

• Support	Models,	which	show	how	an	incident	is	recognised,	handled,	managed	and	
resolved.		These	models	are	usually	process	descriptions	rather	than	technical	
designs,	but	they’re	very	useful	tools	to	allow	various	types	of	problem	scenario	to	
be	considered	so	that	you	know	you’ve	how	each	will	be	handled.	

Operational	
Concerns

Installation,	
Upgrade	and	
Migration

Monitoring,	
Alerting	and	
Control

Configuration	
ManagemnetSupport

Data	
Availability



	
Figure	2	-	Architectural	Models	for	Operational	Concerns	

The	thing	to	recognise	about	these	models	is	that	they’re	not	typical	software	architecture	
or	design	models,	they’re	pragmatic	models	focused	on	particular	concerns.		So	you’ll	
usually	need	your	own	“boxes	and	lines”	or	“text	and	tables”	approach	to	creating	them.		
They	also	need	to	be	developed	in	conjunction	with	the	Development	and	Operations	
groups	to	make	sure	that	everyone	has	a	common	understanding	of	how	the	operational	
environment	will	work.	

Problems	and	Pitfalls	
Some	of	the	specific	things	that	can	go	wrong	when	working	on	the	production-oriented	
aspects	of	your	architecture	include:	

• Late	or	poor	engagement	with	the	operational	staff,	meaning	that	while	you	might	
be	using	lots	of	“DevOps	tooling”	its	going	to	have	very	little	effect	because	the	
Operations	group	don’t	buy	into	it.	

• Lack	of	backout	planning.		A	lot	of	discussion	about	continuous	delivery	and	DevOps	
is	about	how	you	get	code	to	production	safely	but	not	what	to	do	if	things	go	wrong	
and	you	need	to	rollback.		Blue/Green	Testing	and	Canary	Releases	are	powerful	
approaches	[8],	but	they	aren’t	magical,	and	it	can	be	very	difficult	to	rollback	quickly	
with	a	large	database	after	a	high	impact	database	change.	

• Lack	of	migration	planning,	which	is	often	as	much	about	people	as	the	technology.		
Is	everyone	moving	on	one	day?		Do	you	have	a	pilot	phase?		Can	you	Blue/Green	
deploy?		How	do	you	know	if	things	are	working	for	particular	user	groups?		How	will	
data	get	migrated	into	new	databases	or	schema	forms?		Is	there	a	realistic	
timeframe	for	all	of	this?	

• Missing	management	tools	or	processes,	which	can	be	a	symptom	of	not	engaging	
early	and	often	with	Operations.		What	are	you	assuming	they’ll	be	doing?		Do	they	
have	all	the	tools	they	need?	

• Poor	alerting,	often	caused	by	wanting	to	ensure	a	high	degree	of	visibility,	but	not	
thinking	through	failure	scenarios.		It	is	very	easy	to	create	a	tsunami	of	alerts	and	

Operational	
Models

Release	
Models

Config.	
Management	

Models

Administration	
Models

Support	
Models



this	can	make	it	impossible	to	understand	and	address	the	underlying	problem.		Is	
your	alerting	smart	enough	to	allow	Operations	to	pin	point	the	underlying	problem	
quickly?	(An	important	question	for	all	of	your	monitoring	tools	vendors!)	

• Lack	of	integration	into	the	production	environment,	which	again	is	normally	caused	
by	late	collaboration	with	Operations.		What	are	they	expecting	in	terms	of	tools,	
documentation,	processes	and	so	on?		If	you	don’t	get	this	right,	you’re	probably	not	
going	live,	and	these	factors	are	often	difficult	to	judge	in	pre-production	
environments.	

• Inadequate	backup	and	restore	strategy.		In	particular	if	you	have	a	catastrophic	
failure	in	networking	or	a	major	data	centre	problem	and	need	to	operate	from	
another	location,	do	you	have	all	of	the	data	you	need	there?		Do	you	need	to	
perform	any	restore	operations	before	commencing?	And	if	so	how	long	do	they	
take?	

In	Conclusion	
Systems	exist	to	run	in	production	and	deliver	value,	but	sometimes	when	you	look	at	most	
our	software	architecture	literature	you’d	be	forgiven	for	missing	that,	as	it’s	often	not	
emphasised.		The	DevOps	movement	is	a	terrific	step	forwards,	emphasising	the	importance	
of	the	Operations	group	and	the	need	to	unite	development	and	operational	tools	and	
processes.		Software	architecture	still	has	a	big	contribution	to	make	as	software	moves	
towards	production	as	we	still	need	to	understand	the	stakeholders	involved,	their	concerns	
and	how	we	address	them.		Thus	architecture	work	can	guide	DevOps	work	to	adapt	and	
focus	within	in	a	particular	situation.		In	this	column	we’ve	outlined	the	Operational	
viewpoint	that	aims	to	provide	the	architect	with	a	guide	to	achieving	this.	

References		

[1]		G.	Kim,	K.	Behr	and	G.	Spafford,	The	Phoenix	Project:	A	Novel	about	IT,	DevOps,	and	
Helping	Your	Business	Win,	IT	Revolution	Press,	2014.		

[2]		L.	Bass,	I.	Weber	and	Z.	Luming,	DevOps:	A	Software	Architect's	Perspective,	Addison	
Wesley,	2015.		

[3]		N.	Rozanski	and	E.	Woods,	Software	Systems	Architecture,	Addison	Wesley,	2011.		

[4]		N.	Rozanski	and	E.	Woods,	“The	Development	Viewpoint,”	[Online].	Available:	
http://www.viewpoints-and-perspectives.info/home/viewpoints/deployment.	

[5]		Wikipedia,	“Puppet	(software),”	[Online].	Available:	
https://en.wikipedia.org/wiki/Puppet_(software).	[Accessed	03	03	2016].	

[6]		Wikipedia,	“Salt	(Software),”	[Online].	Available:	
https://en.wikipedia.org/wiki/Salt_(software).	[Accessed	03	03	2016].	

[7]		B.	Forrest,	“Bing	and	Google	Agree:	Slow	Pages	Lose	Users,”	O'Reilly,	23	06	2009.	
[Online].	Available:	http://radar.oreilly.com/2009/06/bing-and-google-agree-slow-
pag.html.	[Accessed	03	03	2016].	

[8]		D.	Farley	and	J.	Humble,	Continuous	Delivery:	Relible	Software	Releases	Through	Build,	
Test,	and	Deployment	Automation,	Addison-Wesley,	2010.		

	


