
30 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 1 4 / $ 3 1 . 0 0 © 2 0 1 4 I E E E

Editor: Eoin Woods
Artechra
eoin.woods@artechra.com

THIS COLUMN DISCUSSES archi-
tectural description and the process
of representing and communicating
your designs. What might surprise
you is that despite my previous criti-
cisms,1 I’m going to talk about UML
and why I � nd it useful when creat-
ing architectural descriptions.

UML is widely taught in aca-
demia but in my experience isn’t
used so often in industry. So why do
I persist with it? To explain why, I’ll
show you how I � nd it useful by us-

ing it to describe an important view
of a system (the context view).

Why Use UML at All?
When you create a description of a
computer system, you’re creating a
model of it, a simpli� ed representa-
tion that abstracts away many de-
tails to leave a clear de� nition of
its key concepts. The model then
lets you record, communicate, and
analyze the important aspects of
the design.

One problem people have with
UML is that it doesn’t contain many
of the building blocks you need to
describe the design of a typical sys-
tem. I think this is where people of-
ten go wrong when using it. They
end up with diagrams like the one
in Figure 1, which doesn’t provide
much information. You can tell that
� ve “things” are related to each
other, but that’s about all.

So why persist with UML if it pro-
vides so little assistance with creat-

H arnessing UML for
Architectural Description—
the Context View
Eoin Woods

THE PRAGMATIC
ARCHITECT

s6pra.indd 30 10/3/14 1:48 PM

THE PRAGMATIC ARCHITECT

 NOVEMBER/DECEMBER 2014 | IEEE SOFTWARE 31

ing an architectural description? For
me, there are two reasons. First, you
can easily extend it to add whatever
concepts you need. Second, you can
harness tool support to make your
models much more useful than mere
pictures. In addition, because many
software practitioners understand
its syntax and conventions, they can
understand it with little explanation.

Let’s consider those reasons in
more detail.

A Basis for Other Languages
People are often frustrated with
UML because they want to de
scribe their system in terms of ele
ment types that aren’t part of the
language, such as servlet contain
ers, SQL Server databases, and Java
Script user interfaces, along with
equally specific relationship types
such as message queues to link them
together. Because the base UML lan
guage doesn’t include these concepts,
people give up and define their own
informal notations. However, with a
little work (and ideally a decent mod
elling tool), you can extend UML to
contain whatever element types you
need. I used MagicDraw when writ
ing this column, but many mature
UML tools are available these days.

Figure 2 illustrates this with a
much more specific version of the dia
gram in Figure 1. This diagram com
municates more information than the
generic UML diagram. To do this, it
uses specific element types with an
notations and their own icons, along
with specific connector types that
clarify the nature of the interactions.

To create UML models like this,
you create a UML profile contain
ing the definitions of your new ele
ment types (such as Java Server or
Java Database Connectivity (JDBC)
connection), which are defined in
UML as “stereotypes.” A stereotype

is a UML extension that has a name
and can have a set of specific attri
butes (tags). You can also specify
a new symbol for instances of the
type on diagrams, which makes the
diagrams much easier to understand
than if everything is an oblong box.
Daniel Moody’s 2009 paper, “The
Physics of Notations,” is full of good
advice for defining your own graphi
cal notations.2

I’ve observed that most people
who create effective boxandline di
agrams have a specific vocabulary of
element types they want to represent.
So, UML profiling gives you an easy
way to capture those types once and
reuse them as many times as needed.

Models Aren’t (Just) Pictures
Every architect I know draws pic
tures to explain ideas to people,

Package Analytics]Plain[

«component»
Analytics

store

«component»
User interface

services

«component»
Operational

store

«component»
Analytical
calculator

«component»
Analytics user

interface

«use»

«use»

«use»

«use»

«use»

Package Analytics]Pro�led[

«WebappUI»
Analytics User

Interface

«Database»
Analytics Store

{type = "CouchDB"}

«Database»
Operational Store
{type = "oracle11g"}«JavaServer»

User Interface
Services

«JavaServer»
Analytical Calculator

«jdbc»

«rest_http_rpc»

«jdbc»«rest_http_rpc»

«rmi_rpc»

FIGURE 1. A generic UML diagram. This diagram doesn’t provide much information.

You can tell that five “things” are related to each other, but that’s about all.

FIGURE 2. This specialized UML diagram provides a much more specific version of

Figure 1. It uses specific element types with annotations and their own icons, along with

specific connector types that clarify the nature of the interaction.

s6pra.indd 31 10/3/14 1:48 PM

THE PRAGMATIC ARCHITECT

32 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

sometimes on paper and scanned,
sometimes using a whiteboard with
a digital photo for posterity, or
sometimes using Visio or PowerPoint
to capture something for longer-
term use.

The problem is that all these tech-
nologies capture pictures, not data.
If you need to create the picture
and just make a few changes to it,
they work well. But if you want to
use the data it represents more than
once, you’re stuck (information like
“A calls B” and “C accepts mes-
sages from D”). You’ve probably
been in the position of having a Vi-
sio diagram that you needed two
“views” of, so you had to make a
copy and manually keep the two in
step as they got updated.

If you can capture your model in
a machine-readable form (in a UML
tool of some sort), you have the un-
derlying data as well as pictures. So,
you know that if you rename an ele-
ment, it will be renamed everywhere
it’s used (and you can retrieve more
information from the model, such as
the type of database in the example

in Figure 2). This can help consider-
ably if you’re working with a model
for a long period and changing it
over time.

So how does this help you create
better architectural descriptions?

The Context View
The context view describes the rela-
tionships, dependencies, and inter-
actions between the system and its
environment (usually the people, sys-
tems, and external entities that it in-
teracts with).3 It’s an important view
for a number of stakeholder groups,
yet it isn’t part of the base UML lan-
guage. However, you can extend
UML to solve this.

Figure 3 shows a simple context
diagram with informal notation.
As you can infer from the diagram,
the system manages the making, ap-
proving, and paying of corporate
expense claims. Employees create
expense reports and managers ap-
prove them. The system imports a
set of rules governing allowable-
reimbursement policy from an ex-
ternal policy manager system. It

then accesses the employee direc-
tory to retrieve employee details and
sends payment requests to PayMax,
an external service.

Given the base UML language
doesn’t include this diagram’s ele-
ment types, how would you go about
creating it in UML?

The context view is simple and
doesn’t need that many concepts to
represent it. You need a representa-
tion of the system, representations
of the external entities it’s connected
to, and a set of relationship types
indicating a connection’s character-
istics. As I showed earlier, you can
add them to UML using a profile of
stereotypes.

So for the context view, you can
add stereotypes for the system, for
different types of external applica-
tions, perhaps for data stores that
the application accesses, and for the
various sorts of connectors that the
application has with these external
entities. You can then bundle these
stereotypes into a UML profile you
can reuse whenever you need it.

Figure 4 shows a context view
created using UML extended with a
profile defining the additional con-
cepts it needs (directory, external
service, application and system el-
ements and LDAP, message queue
messaging, and flat-file connections).
The two diagrams have the same un-
derlying model; one has less detail
(perhaps to show acquirers or end
users), and the other has more detail
(perhaps for development teams or
infrastructure designers to use). The
important point is that there’s one
underlying model and the diagrams
are just representations of it. So, if
you change something (perhaps re-
name the Policy Manager), you don’t
need to worry about keeping things
in sync—the diagrams are automati-
cally consistent.

Employee

Manager

Expense report

Expense approval Payment request

Employee
details

Reimbursement rules

Expenses
manager

Policy manager

PayMax
service

Employee
directory

FIGURE 3. A box-and-line context diagram.

s6pra.indd 32 10/3/14 1:48 PM

THE PRAGMATIC ARCHITECT

 NOVEMBER/DECEMBER 2014 | IEEE SOFTWARE 33

So what have you achieved with
this? By extending UML, you have
retained much of the expressiveness
of a less formal picture, but you still
have a model, not just a picture. So,
you can use the underlying model
data in different ways. It also means
that if you need to update some-
thing, you know that it will be au-
tomatically reflected everywhere.
This isn’t a big deal in a simple
model. However, as soon as models
become large, keeping multiple rep-
resentations in step when changing
them becomes time-consuming and
error prone.

UML has fallen out of fa-
vor in mainstream soft-
ware development prac-

tice; I think this is due mainly to how
we used it. We tried to create all-
encompassing models that were far
too detailed. We also tried to use the
base UML language, with its limited

set of constructs, to represent our
specific and rich design domains. So,
we switched to use richer informal
notations instead.

However, although “boxes and
lines” are definitely useful, they have
the fundamental limitation that you
end up with a lot of separate pictures
rather than a model. This can lead to
immediate inconsistency when you
change things, and it prevents you
from using the model as data (for ex-
ample, to generate reports on your
system designs).

Of course, it doesn’t make sense
to tangle with UML and a modelling
tool if you just need a quick sketch
of something; it’s all about context.
You wouldn’t write your shopping
list in JSON, but then you wouldn’t
store complex configuration data as
free text. Architectural models are
similar. Boxes and lines are great for
short-lived models, but an extended
form of UML can be a really useful
addition to your toolbox when you

have complex or long-lived models
and you want to unlock their value
by using them as data.

References
 1. E. Woods, D. Emery, and B. Selic, “Point/

Counterpoint,” IEEE Software, vol. 27,
no. 6, 2010, pp. 54–57.

 2. D.L. Moody, “The ‘Physics’ of Notations:
Toward a Scientific Basis for Constructing
Visual Notations in Software Engineer-
ing,” IEEE Trans. Software Eng., vol. 35,
no. 6, 2009, pp. 756–779.

 3. N. Rozanski and E. Woods, Software
Systems Architecture: Working with Stake-
holders Using Viewpoints and Perspec-
tives, Addison-Wesley, 2011.

EOIN WOODS is a software architect at Ar
techra. Contact him at eoin.woods@artechra.com.

Simple expense manager]ContextUML[Package Expense manager]ContextUML[Package

«system»
Expense
Manager

«system»
Expense
Manager

PayMax Service

payment_request

reimbursement_rules

«ExternalService»
PayMax Service

«Directory»
Employee
Directory

«Application»

«
at �le»

Policy Manager

«use»

«use» «ibm_mq»
payment_request

reimbursement_rules
Policy Manager

Employee

Manager

Employee

Manager

expense_report

expense_approval

expense_report

expense_approval

«ldap»
emp_query

(a) (b)

FIGURE 4. Context views using a UML profile, (a) overview and (b) detail. There’s one underlying model; the two diagrams are just

representations of it.

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

s6pra.indd 33 10/3/14 1:48 PM

