
2	 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY � 0 7 4 0 - 7 4 5 9 / 1 8 / $ 3 3 . 0 0 © 2 0 1 8 I E E E

THE PRAGMATIC
ARCHITECT

Editor: Eoin Woods
Endava
eoin.woods@endava.com

The Pragmatic Architect
Evolves
Eoin Woods and George Fairbanks

IN A PREVIOUS article in this de-
partment, Eoin Woods explored
how the software engineering indus-
try has evolved and what this has
meant for the role of the software ar-
chitect.1 Eoin demonstrated how the
role has changed in response to the
changing demands of software engi-
neering practice.

Now, the Pragmatic Architect de-
partment is changing as well. So, it
seems appropriate to look back over
its history to see how it has changed
and consider the topics it should
cover in the future.

Industry Trends
In that previous article, Eoin ob-
served that major changes in in-
dustrial practice seem to happen
roughly every 10 years (see Figure 1).
The 1980s were the Monolithic
Age, characterized by centralized
computing (mainframes and mini-
computers). The 1990s were the
Distributed Monoliths Age, seeing
the widespread use of distributed
systems (particularly client-server
computing). In the 2000s, the Internet-
Connected Age arrived, when sys-
tems were connected to a worldwide
user base through the public Inter-
net. Now, in the 2010s, we’re in the
Internet Is the System Age, where
we’ve embraced the Internet as a
central part of our computing en-
vironment, with systems becoming

more fluid and dynamic. Next will
be the Intelligent Connected Age,
featuring context-aware, highly con-
nected, and predictive systems that
actively assist their users, rather than
just provide useful functions.

In each age, new challenges
emerge, and software architects
meet them by evolving and extend-
ing software architecture practice.
The Distributed Monoliths Age saw
architecture being recognized as a
distinct specialization, as complex
system-level decisions needed to be
made. The Internet-Connected Age
saw a new focus on quality proper-
ties. The Internet Is the System Age
has needed new, more reactive, less
formal approaches that let systems
evolve to respond to the demands of
Internet-scale use. The Intelligent
Connected Age will require us to re-
think practice again as big unstruc-
tured datasets, analytics, intelligent
behavior, and connected devices
become common in mainstream
systems.

Column Topics
In past articles in this department,
three themes have dominated (see
Figure 2):

•	 Methodology (software archi-
tecture methods and techniques)
was the theme of nearly half of
the articles.

•	 The role of the software archi-
tect (what we do and how we
relate to others) filled just over a
quarter of the articles.

•	 System qualities (often called
nonfunctional requirements or
quality attributes) constituted
the theme of about a sixth of the
articles.

The remaining articles covered gen-
eral topics related to the department
itself.

Popular topics in the articles cov-
ering methodology included archi-
tectural description (three times),
agile working (twice), and dealing
with requirements (twice). Topics
that appeared once were architecture
knowledge, governance, implemen-
tation, principles, prioritization, re-
engineering, refactoring, styles and
patterns, technical debt, technology,
and testing. This variety reflects the
broad range of activities architects
are involved in and the wide influ-
ence architects can have.

Two of the articles covering the
role of the architect discussed how
agile development affects the archi-
tect’s job. The other articles on this
theme discussed a range of aspects:
DevOps, implementation, innova-
tion, the need to be multiskilled
across the system lifecycle, priori-
tization, the psychology of the role,
the importance of understanding

THE PRAGMATIC ARCHITECT

	 NOVEMBER/DECEMBER 2018 | IEEE SOFTWARE � 3

architectural reality versus theory,
how the role has changed in response
to changing needs, and teamwork.

Somewhat surprisingly, fewer
columns explored system qualities.
Topics included the qualities of the
architecture itself (twice), energy con-
sumption (twice), usability (twice),
and value (once). The articles that
discussed the qualities of the archi-
tecture itself and usability started
out as two long articles that each
got split into two parts. Also, energy
consumption appeared twice be-
cause it’s a current research interest
of Eoin, which probably gave it un-
usual prominence, compared to most
architects’ day-to-day concerns.

Toward the Future
So, how should the column evolve to
meet software architects’ changing
needs? When we looked at the cur-
rent and future ages of software de-
velopment practice, we found some
themes that are driving the evolution
of architecture practice.

The Current Age
In the Internet is the System Age,
the Internet environment’s commer-
cial pressures mean that a primary
concern is how to enable a sys-
tem’s rapid, reliable evolution while
ensuring that the architecture is
sustainable and won’t ossify under
a mountain of technical debt. This
environment will likely result in ar-
chitects defining their architectures
more as a set of patterns and prin-
ciples than as a static structure that
remains stable for a long period.
They’ll democratize as much of the
architecture work as possible by
making it a team-wide responsibility.
Architects will also work to produce
a stream of architectural decisions
as they’re needed, rather than mak-
ing most of the big decisions as early

as possible, as we used to think was
important. A good example of this
trend is Eltjo Poort’s Risk- and Cost-
Driven Architecture.2

So, we think that, in the current
age of software development, archi-
tects have the following concerns.

Architects are still concerned
about Internet-era quality properties,

particularly (rapid) evolvability, sus-
tainability, scalability, reliability,
performance, and security. This de-
partment has already talked occa-
sionally about quality properties, and
it looks as if the time is right to con-
tinue that conversation.

Also, given the need to evolve
quickly, it seems inevitable that we’ll

Monolithic
(1980s)

Distributed
monoliths
(1990s)

Internet-
connected

(2000s)

Internet is
the system

(2010s)

Intelligent
connected

(2020s)

FIGURE 1. The five ages of software systems.1 In each age, software architects meet

the new challenges by evolving and extending how they do software architecture work.

Methodology

 Other

27%

System qualities

The role of the
software architect

18%

 4%

51%

FIGURE 2. Past themes in the Pragmatic Architect.

THE PRAGMATIC ARCHITECT

4	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

incur technical debt in order to meet
the challenges of this age. So, the rec-
ognition and management of techni-
cal debt will likely be of interest to
many architects for the next couple
of years.

In addition, patterns and princi-
ples will be important for architec-
ture definition and communication if
we’re to deal with constantly evolv-
ing, loosely coupled architectures
that change rapidly. So, the depart-
ment should probably explore this
topic.

A related topic concerns how ar-
chitecture work will get done. For
development to move at the speed
the Internet environment requires, it
seems impossible and undesirable for
the architecture to still come from
the head of one person or a small
group of people, as Fred Brookes
originally thought best.3 Instead,
the current trend of seeing architec-
ture as a team-wide concern (which
Brookes predicted) will likely accel-
erate. And, we’ll need to solve the
challenge that Brookes identified of
“how to achieve conceptual integ-
rity while doing team design, and
at the same time to achieve the very
real benefits of collaboration.”3 This
suggests a number of topics that
the column could explore related to
identifying, prioritizing, and execut-
ing team-based architecture work.

The Next Age
Regarding the Intelligent Connected
Age, the following concerns seem
particularly relevant.

Given the growing need for data
analysis and intelligent behavior in
our systems, we need to move be-
yond just structural design to focus
more on data and algorithm design.

Also, the current trend of provid-
ing an up-front defined structure of
a system will be replaced by the need

to deal with a constantly evolving
runtime structure.

That leads to narrow, location-
specific decisions being less valuable,
because they age quickly, and an in-
creased focus on using principles,
patterns, and policies to guide design
behavior across the development
team.

In addition, as we move to archi-
tectures that emerge at runtime and
data-driven behavior, the architect’s
job seems likely to involve less cer-
tainty (such as “The system has 20
instances of InboundReqHdlr”) and
more probability (“We’ll have about
2.15 3 concurrent_request_volume
request handlers implementing the
InboundReqHdlr interface running
at any point in time”).

And, even before DevOps became
a trend, many architects recognized
the need to be deeply involved in
system operation to achieve runtime
quality properties. So, they have the
experience of working with an op-
erations group to define processes
for operating the system. However,
future systems will be difficult to
operate using a traditional runbook-
based approach. Therefore, in the
future, this work will focus on op-
erational policies and policy-driven
automation, rather than step-by-step
manual processes.

Finally, most architects tend to
recoil when talk turns to project
finance and topics such as budgets,
cash flow, and capital and opera-
tional expenditure (capex and opex).
However, as the world changes, we
might need to be more concerned
about these things. We can’t just as-
sume that the chief finance officer
will be happy that our hardware bud-
get has switched from large-outlay
capex, depreciating over three years,
to an ever-rising opex bill, paid
monthly to our cloud provider.

These are often uncharted territories
for the finance and technology staff
alike, so there’s much to learn on
both sides.

The Evolution of Architecture Work
This new set of concerns suggests
that the Pragmatic Architect might
need to cover a range of new top-
ics in the next few years, including
these:

•	 How we adapt our architectural
thinking to meet the needs of
data-driven systems (such as
machine-learning systems).

•	 How we define, document,
communicate, and evolve sys-
tems that will evolve faster and
change more at runtime than is
common today.

•	 How we make architecture a
team responsibility rather than
something that’s “the architect’s
problem.”

•	 How the new world of policy-
driven automated operations
affects application architecture
work.

•	 What a move to consumption-
based computing means for
people outside a company’s tech-
nology staff, such as the legal,
finance, and risk staff. What
will be easier? What will cause
difficulties?

Our Changing Environment
If we also consider broader indus-
try trends since the department was
founded, we can see other changing
factors that will continue to influ-
ence the department’s content and
form.

For example, in 2009, software
architecture was a much newer field,
so many of the columns introduced
fundamental concepts. Today, many
books, blogs, and conference talks

THE PRAGMATIC ARCHITECT

	 NOVEMBER/DECEMBER 2018 | IEEE SOFTWARE � 5

cover the fundamentals. So, the col-
umn is pushing ahead to emerging
topics that are not yet mainstream
practice, such as energy consump-
tion as an architectural concern.

Also, the communication chan-
nels people use are changing from
printed books and long-form blogs to
video, audio, tweets, and short pieces
on sites such as www.computer
.org. In response, IEEE Software
now republishes content on sites
such as InfoQ and sponsors the Soft-
ware Engineering Radio podcast,
to make this content available to a
wider audience.

In addition, formal software
architecture job titles are becom-
ing less common, in some cases be-
ing replaced by “technical lead” or
“principal engineer.” This reflects
the wide acceptance of architecture
as a routine part of software devel-
opment but also its democratization
across the software development or-
ganization. It also reflects the reduc-
tion in up-front design that software
architecture work today involves
and the greater focus on constant in-
put and evolution, as we mentioned
before.

Finally, software architecture
practice is changing from one fo-
cused on modeling and communicat-
ing through formal documentation
to being integrated into other activi-
ties throughout the software devel-
opment lifecycle. Thus, it now uses
a range of techniques and artifacts
(including code, tests, task-specific
documents, and oral communica-
tion) to communicate the essentials
of an architecture to a team.

We can’t predict the future, but,
as Eoin said, “As software systems
have evolved, so has software ar-
chitecture, with practices evolving
to meet each era’s new challenges.”1
We’re confident that the future is

full of new challenges for software
architects, and we’re equally con-
fident that the field will develop to
meet them. The Pragmatic Architect
will be trying to cover the topics re-
quired to keep architecture practitio-
ners abreast of these developments,
and allow them to prepare for this
changing world.

F rank Buschmann founded
the Pragmatic Architect de-
partment in 2009 and ed-

ited it until 2013. Eoin took over in
2014 and is retiring with this article.
Starting in 2019, George Fairbanks
will edit the department.

George is a practicing software
developer with academic leanings.
He studied software architecture at
Carnegie Mellon University and has
been involved with the SATURN
(Software Engineering Institute Ar-
chitecture Technology User Net-
work) Conference for many years.
Like Eoin, he has written a book
on software architecture and is
passionate about software design.

After years of teaching object-oriented
analysis and design and building sys-
tems at financial companies, he’s a
software engineer at Google in New
York City. You can find him on the
web at http://www.georgefairbanks
.com.

We look forward to many more
years of the Pragmatic Architect, in
whatever form it needs to take to
serve you, the practicing software
architect. We hope that the depart-
ment continues to help you in your
daily work.

References
	 1.	E. Woods, “Software Architecture in

a Changing World,” IEEE Software,

vol. 33, no. 6, 2016, pp. 94–97.

	 2.	E.R. Poort, “Driving Agile Architect-

ing with Cost and Risk,” IEEE Soft-

ware, vol. 31, no. 5, 2014, pp. 20–23.

	 3.	F.P. Brooks, The Design of Design,

Addison-Wesley, 2010.

Read your subscriptions
through the myCS
publications portal at

http://mycs.computer.org

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

EOIN WOODS is the chief technology officer at Endava. Contact

him at eoin.woods@endava.com.

GEORGE FAIRBANKS is a software engineer at Google. Contact

him at gf@georgefairbanks.com.

